a2+b2=c2a^2 + b^2 = c^2a2+b2=c2
v(t)=v0+12at2v(t) = v_0 + \frac{1}{2}at^2v(t)=v0+21at2
γ=11−v2/c2\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}γ=1−v2/c21
∃x∀y(Rxy≡Ryx)\exists x \forall y (Rxy \equiv Ryx)∃x∀y(Rxy≡Ryx)
p∧q⊨pp \wedge q \models pp∧q⊨p
□⋄p≡⋄p\Box\diamond p\equiv\diamond p□⋄p≡⋄p
∫01xdx=[12x2]01=12\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}∫01xdx=[21x2]01=21
ex=∑n=0∞xnn!=limn→∞(1+x/n)ne^x = \sum_{n=0}^\infty \frac{x^n}{n!} = \lim_{n\rightarrow\infty} (1+x/n)^nex=∑n=0∞n!xn=limn→∞(1+x/n)n