
Pandoc User’s Guide

John MacFarlane

March 16, 2025

Synopsis
pandoc [options] [input-file]…

Description
Pandoc is a Haskell library for converting from one markup format to another,
and a command-line tool that uses this library.

Pandoc can convert between numerous markup and word processing formats,
including, but not limited to, various flavors of Markdown, HTML, LaTeX and
Word docx. For the full lists of input and output formats, see the --from and
--to options below. Pandoc can also produce PDF output: see creating a PDF,
below.

Pandoc’s enhanced version of Markdown includes syntax for tables, definition
lists, metadata blocks, footnotes, citations, math, and much more. See below
under Pandoc’s Markdown.

Pandoc has a modular design: it consists of a set of readers, which parse text
in a given format and produce a native representation of the document (an
abstract syntax tree or AST), and a set of writers, which convert this native
representation into a target format. Thus, adding an input or output format
requires only adding a reader or writer. Users can also run custom pandoc filters
to modify the intermediate AST.

Because pandoc’s intermediate representation of a document is less expressive
than many of the formats it converts between, one should not expect perfect
conversions between every format and every other. Pandoc attempts to preserve
the structural elements of a document, but not formatting details such as margin
size. And some document elements, such as complex tables, may not fit into
pandoc’s simple document model. While conversions from pandoc’s Markdown
to all formats aspire to be perfect, conversions from formats more expressive
than pandoc’s Markdown can be expected to be lossy.

1

https://www.haskell.org
https://daringfireball.net/projects/markdown/
https://www.w3.org/html/
https://www.latex-project.org/
https://en.wikipedia.org/wiki/Office_Open_XML
https://www.adobe.com/pdf/
https://pandoc.org/filters.html

Using pandoc
If no input-files are specified, input is read from stdin. Output goes to stdout
by default. For output to a file, use the -o option:

pandoc -o output.html input.txt

By default, pandoc produces a document fragment. To produce a standalone
document (e.g. a valid HTML file including <head> and <body>), use the -s or
--standalone flag:

pandoc -s -o output.html input.txt

For more information on how standalone documents are produced, see Tem-
plates below.

If multiple input files are given, pandoc will concatenate them all (with blank
lines between them) before parsing. (Use --file-scope to parse files individu-
ally.)

Specifying formats
The format of the input and output can be specified explicitly using command-
line options. The input format can be specified using the -f/--from option,
the output format using the -t/--to option. Thus, to convert hello.txt from
Markdown to LaTeX, you could type:

pandoc -f markdown -t latex hello.txt

To convert hello.html from HTML to Markdown:

pandoc -f html -t markdown hello.html

Supported input and output formats are listed below under Options (see
-f for input formats and -t for output formats). You can also use pandoc
--list-input-formats and pandoc --list-output-formats to print lists of
supported formats.

If the input or output format is not specified explicitly, pandoc will attempt to
guess it from the extensions of the filenames. Thus, for example,

pandoc -o hello.tex hello.txt

will convert hello.txt from Markdown to LaTeX. If no output file is specified
(so that output goes to stdout), or if the output file’s extension is unknown,
the output format will default to HTML. If no input file is specified (so that
input comes from stdin), or if the input files’ extensions are unknown, the input
format will be assumed to be Markdown.

2

Character encoding
Pandoc uses the UTF-8 character encoding for both input and output. If your lo-
cal character encoding is not UTF-8, you should pipe input and output through
iconv:

iconv -t utf-8 input.txt | pandoc | iconv -f utf-8

Note that in some output formats (such as HTML, LaTeX, ConTeXt, RTF,
OPML, DocBook, and Texinfo), information about the character encoding is
included in the document header, which will only be included if you use the
-s/--standalone option.

Creating a PDF
To produce a PDF, specify an output file with a .pdf extension:

pandoc test.txt -o test.pdf

By default, pandoc will use LaTeX to create the PDF, which requires that a La-
TeX engine be installed (see --pdf-engine below). Alternatively, pandoc can
use ConTeXt, roff ms, or HTML as an intermediate format. To do this, specify
an output file with a .pdf extension, as before, but add the --pdf-engine
option or -t context, -t html, or -t ms to the command line. The tool
used to generate the PDF from the intermediate format may be specified using
--pdf-engine.

You can control the PDF style using variables, depending on the intermedi-
ate format used: see variables for LaTeX, variables for ConTeXt, variables for
wkhtmltopdf, variables for ms. When HTML is used as an intermediate format,
the output can be styled using --css.

To debug the PDF creation, it can be useful to look at the intermediate repre-
sentation: instead of -o test.pdf, use for example -s -o test.tex to output
the generated LaTeX. You can then test it with pdflatex test.tex.

When using LaTeX, the following packages need to be available (they are
included with all recent versions of TeX Live): amsfonts, amsmath, lm,
unicode-math, iftex, listings (if the --listings option is used), fancyvrb,
longtable, booktabs, [multirow] (if the document contains a table with
cells that cross multiple rows), graphicx (if the document contains images),
bookmark, xcolor, soul, geometry (with the geometry variable set), setspace
(with linestretch), and babel (with lang). If CJKmainfont is set, xeCJK
is needed if xelatex is used, else luatexja is needed if lualatex is used.
framed is required if code is highlighted in a scheme that use a colored
background. The use of xelatex or lualatex as the PDF engine requires
fontspec. lualatex uses selnolig and lua-ul. xelatex uses bidi (with the
dir variable set). If the mathspec variable is set, xelatex will use mathspec
instead of unicode-math. The upquote and microtype packages are used if
available, and csquotes will be used for typography if the csquotes variable

3

https://www.gnu.org/software/libiconv/
https://www.tug.org/texlive/
https://ctan.org/pkg/amsfonts
https://ctan.org/pkg/amsmath
https://ctan.org/pkg/lm
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/iftex
https://ctan.org/pkg/listings
https://ctan.org/pkg/fancyvrb
https://ctan.org/pkg/longtable
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/bookmark
https://ctan.org/pkg/xcolor
https://ctan.org/pkg/soul
https://ctan.org/pkg/geometry
https://ctan.org/pkg/setspace
https://ctan.org/pkg/babel
https://ctan.org/pkg/xecjk
https://ctan.org/pkg/luatexja
https://ctan.org/pkg/framed
https://ctan.org/pkg/fontspec
https://ctan.org/pkg/selnolig
https://ctan.org/pkg/lua-ul
https://ctan.org/pkg/bidi
https://ctan.org/pkg/mathspec
https://ctan.org/pkg/unicode-math
https://ctan.org/pkg/upquote
https://ctan.org/pkg/microtype
https://ctan.org/pkg/csquotes

or metadata field is set to a true value. The natbib, biblatex, bibtex, and
biber packages can optionally be used for citation rendering. The following
packages will be used to improve output quality if present, but pandoc does
not require them to be present: upquote (for straight quotes in verbatim
environments), microtype (for better spacing adjustments), parskip (for
better inter-paragraph spaces), xurl (for better line breaks in URLs), and
footnotehyper or footnote (to allow footnotes in tables).

Reading from the Web
Instead of an input file, an absolute URI may be given. In this case pandoc will
fetch the content using HTTP:

pandoc -f html -t markdown https://www.fsf.org

It is possible to supply a custom User-Agent string or other header when re-
questing a document from a URL:

pandoc -f html -t markdown --request-header User-Agent:"Mozilla/5.0" \
https://www.fsf.org

Options
General options
-f FORMAT, -r FORMAT, --from=FORMAT, --read=FORMAT

Specify input format. FORMAT can be:

• bibtex (BibTeX bibliography)
• biblatex (BibLaTeX bibliography)
• bits (BITS XML, alias for jats)
• commonmark (CommonMark Markdown)
• commonmark_x (CommonMark Markdown with extensions)
• creole (Creole 1.0)
• csljson (CSL JSON bibliography)
• csv (CSV table)
• tsv (TSV table)
• djot (Djot markup)
• docbook (DocBook)
• docx (Word docx)
• dokuwiki (DokuWiki markup)
• endnotexml (EndNote XML bibliography)
• epub (EPUB)
• fb2 (FictionBook2 e-book)
• gfm (GitHub-Flavored Markdown), or the deprecated and less accu-

rate markdown_github; use markdown_github only if you need ex-
tensions not supported in gfm.

4

https://ctan.org/pkg/natbib
https://ctan.org/pkg/biblatex
https://ctan.org/pkg/bibtex
https://ctan.org/pkg/biber
https://ctan.org/pkg/upquote
https://ctan.org/pkg/microtype
https://ctan.org/pkg/parskip
https://ctan.org/pkg/xurl
https://ctan.org/pkg/footnotehyper
https://ctan.org/pkg/footnote
https://ctan.org/pkg/bibtex
https://ctan.org/pkg/biblatex
https://jats.nlm.nih.gov/extensions/bits/
https://commonmark.org
https://commonmark.org
http://www.wikicreole.org/wiki/Creole1.0
https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://tools.ietf.org/html/rfc4180
https://www.iana.org/assignments/media-types/text/tab-separated-values
https://djot.net
https://docbook.org
https://en.wikipedia.org/wiki/Office_Open_XML
https://www.dokuwiki.org/dokuwiki
https://support.clarivate.com/Endnote/s/article/EndNote-XML-Document-Type-Definition
http://idpf.org/epub
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
https://help.github.com/articles/github-flavored-markdown/

• haddock (Haddock markup)
• html (HTML)
• ipynb (Jupyter notebook)
• jats (JATS XML)
• jira (Jira/Confluence wiki markup)
• json (JSON version of native AST)
• latex (LaTeX)
• markdown (Pandoc’s Markdown)
• markdown_mmd (MultiMarkdown)
• markdown_phpextra (PHP Markdown Extra)
• markdown_strict (original unextended Markdown)
• mediawiki (MediaWiki markup)
• man (roff man)
• mdoc (mdoc manual page markup)
• muse (Muse)
• native (native Haskell)
• odt (OpenDocument text document)
• opml (OPML)
• org (Emacs Org mode)
• pod (Perl’s Plain Old Documentation)
• ris (RIS bibliography)
• rtf (Rich Text Format)
• rst (reStructuredText)
• t2t (txt2tags)
• textile (Textile)
• tikiwiki (TikiWiki markup)
• twiki (TWiki markup)
• typst (typst)
• vimwiki (Vimwiki)
• the path of a custom Lua reader, see Custom readers and writers

below

Extensions can be individually enabled or disabled by appending
+EXTENSION or -EXTENSION to the format name. See Extensions below,
for a list of extensions and their names. See --list-input-formats and
--list-extensions, below.

-t FORMAT, -w FORMAT, --to=FORMAT, --write=FORMAT
Specify output format. FORMAT can be:

• ansi (text with ANSI escape codes, for terminal viewing)
• asciidoc (modern AsciiDoc as interpreted by AsciiDoctor)
• asciidoc_legacy (AsciiDoc as interpreted by asciidoc-py).
• asciidoctor (deprecated synonym for asciidoc)
• beamer (LaTeX beamer slide show)
• bibtex (BibTeX bibliography)
• biblatex (BibLaTeX bibliography)

5

https://www.haskell.org/haddock/doc/html/ch03s08.html
https://www.w3.org/html/
https://nbformat.readthedocs.io/en/latest/
https://jats.nlm.nih.gov
https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all
https://www.latex-project.org/
https://fletcherpenney.net/multimarkdown/
https://michelf.ca/projects/php-markdown/extra/
https://daringfireball.net/projects/markdown/
https://www.mediawiki.org/wiki/Help:Formatting
https://man.cx/groff_man(7)
https://mandoc.bsd.lv/man/mdoc.7.html
https://amusewiki.org/library/manual
https://en.wikipedia.org/wiki/OpenDocument
http://dev.opml.org/spec2.html
https://orgmode.org
https://perldoc.perl.org/perlpod
https://en.wikipedia.org/wiki/RIS_(file_format)
https://en.wikipedia.org/wiki/Rich_Text_Format
https://docutils.sourceforge.io/docs/ref/rst/introduction.html
https://txt2tags.org
https://textile-lang.com
https://doc.tiki.org/Wiki-Syntax-Text#The_Markup_Language_Wiki-Syntax
https://twiki.org/cgi-bin/view/TWiki/TextFormattingRules
https://typst.app
https://vimwiki.github.io
https://en.wikipedia.org/wiki/ANSI_escape_code
https://asciidoc.org/
https://asciidoctor.org/
https://asciidoc.org/
https://github.com/asciidoc-py/asciidoc-py
https://ctan.org/pkg/beamer
https://ctan.org/pkg/bibtex
https://ctan.org/pkg/biblatex

• chunkedhtml (zip archive of multiple linked HTML files)
• commonmark (CommonMark Markdown)
• commonmark_x (CommonMark Markdown with extensions)
• context (ConTeXt)
• csljson (CSL JSON bibliography)
• djot (Djot markup)
• docbook or docbook4 (DocBook 4)
• docbook5 (DocBook 5)
• docx (Word docx)
• dokuwiki (DokuWiki markup)
• epub or epub3 (EPUB v3 book)
• epub2 (EPUB v2)
• fb2 (FictionBook2 e-book)
• gfm (GitHub-Flavored Markdown), or the deprecated and less accu-

rate markdown_github; use markdown_github only if you need ex-
tensions not supported in gfm.

• haddock (Haddock markup)
• html or html5 (HTML, i.e. HTML5/XHTML polyglot markup)
• html4 (XHTML 1.0 Transitional)
• icml (InDesign ICML)
• ipynb (Jupyter notebook)
• jats_archiving (JATS XML, Archiving and Interchange Tag Set)
• jats_articleauthoring (JATS XML, Article Authoring Tag Set)
• jats_publishing (JATS XML, Journal Publishing Tag Set)
• jats (alias for jats_archiving)
• jira (Jira/Confluence wiki markup)
• json (JSON version of native AST)
• latex (LaTeX)
• man (roff man)
• markdown (Pandoc’s Markdown)
• markdown_mmd (MultiMarkdown)
• markdown_phpextra (PHP Markdown Extra)
• markdown_strict (original unextended Markdown)
• markua (Markua)
• mediawiki (MediaWiki markup)
• ms (roff ms)
• muse (Muse)
• native (native Haskell)
• odt (OpenDocument text document)
• opml (OPML)
• opendocument (OpenDocument XML)
• org (Emacs Org mode)
• pdf (PDF)
• plain (plain text)
• pptx (PowerPoint slide show)
• rst (reStructuredText)

6

https://commonmark.org
https://commonmark.org
https://www.contextgarden.net/
https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html
https://djot.net
https://docbook.org
https://en.wikipedia.org/wiki/Office_Open_XML
https://www.dokuwiki.org/dokuwiki
http://idpf.org/epub
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
https://help.github.com/articles/github-flavored-markdown/
https://www.haskell.org/haddock/doc/html/ch03s08.html
https://www.w3.org/html/
https://html.spec.whatwg.org/
https://www.w3.org/TR/html-polyglot/
https://www.w3.org/TR/xhtml1/
https://manualzz.com/doc/9627253/adobe-indesign-cs6-idml-cookbook
https://nbformat.readthedocs.io/en/latest/
https://jats.nlm.nih.gov
https://jats.nlm.nih.gov
https://jats.nlm.nih.gov
https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all
https://www.latex-project.org/
https://man.cx/groff_man(7)
https://fletcherpenney.net/multimarkdown/
https://michelf.ca/projects/php-markdown/extra/
https://daringfireball.net/projects/markdown/
https://leanpub.com/markua/read
https://www.mediawiki.org/wiki/Help:Formatting
https://man.cx/groff_ms(7)
https://amusewiki.org/library/manual
https://en.wikipedia.org/wiki/OpenDocument
http://dev.opml.org/spec2.html
https://www.oasis-open.org/2021/06/16/opendocument-v1-3-oasis-standard-published/
https://orgmode.org
https://www.adobe.com/pdf/
https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://docutils.sourceforge.io/docs/ref/rst/introduction.html

• rtf (Rich Text Format)
• texinfo (GNU Texinfo)
• textile (Textile)
• slideous (Slideous HTML and JavaScript slide show)
• slidy (Slidy HTML and JavaScript slide show)
• dzslides (DZSlides HTML5 + JavaScript slide show)
• revealjs (reveal.js HTML5 + JavaScript slide show)
• s5 (S5 HTML and JavaScript slide show)
• tei (TEI Simple)
• typst (typst)
• xwiki (XWiki markup)
• zimwiki (ZimWiki markup)
• the path of a custom Lua writer, see Custom readers and writers

below

Note that odt, docx, epub, and pdf output will not be directed to stdout
unless forced with -o -.

Extensions can be individually enabled or disabled by appending
+EXTENSION or -EXTENSION to the format name. See Extensions below,
for a list of extensions and their names. See --list-output-formats
and --list-extensions, below.

-o FILE, --output=FILE Write output to FILE instead of stdout. If FILE is
-, output will go to stdout, even if a non-textual format (docx, odt, epub2,
epub3) is specified. If the output format is chunkedhtml and FILE has
no extension, then instead of producing a .zip file pandoc will create a
directory FILE and unpack the zip archive there (unless FILE already
exists, in which case an error will be raised).

--data-dir=DIRECTORY Specify the user data directory to search for pan-
doc data files. If this option is not specified, the default user data directory
will be used. On *nix and macOS systems this will be the pandoc sub-
directory of the XDG data directory (by default, $HOME/.local/share,
overridable by setting the XDG_DATA_HOME environment variable). If that
directory does not exist and $HOME/.pandoc exists, it will be used (for
backwards compatibility). On Windows the default user data directory
is %APPDATA%\pandoc. You can find the default user data directory on
your system by looking at the output of pandoc --version. Data files
placed in this directory (for example, reference.odt, reference.docx,
epub.css, templates) will override pandoc’s normal defaults. (Note that
the user data directory is not created by pandoc, so you will need to create
it yourself if you want to make use of it.)

-d FILE, --defaults=FILE Specify a set of default option settings. FILE is
a YAML file whose fields correspond to command-line option settings. All
options for document conversion, including input and output files, can be
set using a defaults file. The file will be searched for first in the working

7

https://en.wikipedia.org/wiki/Rich_Text_Format
https://www.gnu.org/software/texinfo/
https://textile-lang.com
https://goessner.net/articles/slideous/
https://www.w3.org/Talks/Tools/Slidy2/
https://paulrouget.com/dzslides/
https://revealjs.com/
https://meyerweb.com/eric/tools/s5/
https://github.com/TEIC/TEI-Simple
https://typst.app
https://www.xwiki.org/xwiki/bin/view/Documentation/UserGuide/Features/XWikiSyntax/
https://zim-wiki.org/manual/Help/Wiki_Syntax.html

directory, and then in the defaults subdirectory of the user data directory
(see --data-dir). The .yaml extension may be omitted. See the section
Defaults files for more information on the file format. Settings from the
defaults file may be overridden or extended by subsequent options on the
command line.

--bash-completion Generate a bash completion script. To enable bash com-
pletion with pandoc, add this to your .bashrc:

eval "$(pandoc --bash-completion)"

--verbose Give verbose debugging output.

--quiet Suppress warning messages.

--fail-if-warnings[=true|false] Exit with error status if there are any
warnings.

--log=FILE Write log messages in machine-readable JSON format to FILE.
All messages above DEBUG level will be written, regardless of verbosity
settings (--verbose, --quiet).

--list-input-formats List supported input formats, one per line.

--list-output-formats List supported output formats, one per line.

--list-extensions[=FORMAT] List supported extensions for FORMAT,
one per line, preceded by a + or - indicating whether it is enabled by
default in FORMAT. If FORMAT is not specified, defaults for pandoc’s
Markdown are given.

--list-highlight-languages List supported languages for syntax highlight-
ing, one per line.

--list-highlight-styles List supported styles for syntax highlighting, one
per line. See --highlight-style.

-v, --version Print version.

-h, --help Show usage message.

Reader options
--shift-heading-level-by=NUMBER Shift heading levels by a positive

or negative integer. For example, with --shift-heading-level-by=-1,
level 2 headings become level 1 headings, and level 3 headings become
level 2 headings. Headings cannot have a level less than 1, so a heading
that would be shifted below level 1 becomes a regular paragraph. Ex-
ception: with a shift of -N, a level-N heading at the beginning of the
document replaces the metadata title. --shift-heading-level-by=-1
is a good choice when converting HTML or Markdown documents that
use an initial level-1 heading for the document title and level-2+ headings

8

for sections. --shift-heading-level-by=1 may be a good choice for
converting Markdown documents that use level-1 headings for sections to
HTML, since pandoc uses a level-1 heading to render the document title.

--base-header-level=NUMBER Deprecated. Use --shift-heading-level-by=X
instead, where X = NUMBER - 1. Specify the base level for headings
(defaults to 1).

--indented-code-classes=CLASSES Specify classes to use for indented
code blocks—for example, perl,numberLines or haskell. Multiple
classes may be separated by spaces or commas.

--default-image-extension=EXTENSION Specify a default extension to
use when image paths/URLs have no extension. This allows you to use the
same source for formats that require different kinds of images. Currently
this option only affects the Markdown and LaTeX readers.

--file-scope[=true|false] Parse each file individually before combining for
multifile documents. This will allow footnotes in different files with the
same identifiers to work as expected. If this option is set, footnotes and
links will not work across files. Reading binary files (docx, odt, epub)
implies --file-scope.

If two or more files are processed using --file-scope, prefixes based on
the filenames will be added to identifiers in order to disambiguate them,
and internal links will be adjusted accordingly. For example, a header
with identifier foo in subdir/file1.txt will have its identifier changed
to subdir__file1.txt__foo.

-F PROGRAM, --filter=PROGRAM Specify an executable to be used
as a filter transforming the pandoc AST after the input is parsed and
before the output is written. The executable should read JSON from stdin
and write JSON to stdout. The JSON must be formatted like pandoc’s
own JSON input and output. The name of the output format will be
passed to the filter as the first argument. Hence,

pandoc --filter ./caps.py -t latex

is equivalent to

pandoc -t json | ./caps.py latex | pandoc -f json -t latex

The latter form may be useful for debugging filters.

Filters may be written in any language. Text.Pandoc.JSON exports
toJSONFilter to facilitate writing filters in Haskell. Those who would
prefer to write filters in python can use the module pandocfilters,
installable from PyPI. There are also pandoc filter libraries in PHP, perl,
and JavaScript/node.js.

In order of preference, pandoc will look for filters in

9

https://github.com/jgm/pandocfilters
https://github.com/vinai/pandocfilters-php
https://metacpan.org/pod/Pandoc::Filter
https://github.com/mvhenderson/pandoc-filter-node

1. a specified full or relative path (executable or non-executable),

2. $DATADIR/filters (executable or non-executable) where $DATADIR
is the user data directory (see --data-dir, above),

3. $PATH (executable only).

Filters, Lua-filters, and citeproc processing are applied in the order speci-
fied on the command line.

-L SCRIPT, --lua-filter=SCRIPT Transform the document in a similar
fashion as JSON filters (see --filter), but use pandoc’s built-in Lua
filtering system. The given Lua script is expected to return a list of Lua
filters which will be applied in order. Each Lua filter must contain element-
transforming functions indexed by the name of the AST element on which
the filter function should be applied.

The pandoc Lua module provides helper functions for element creation. It
is always loaded into the script’s Lua environment.

See the Lua filters documentation for further details.

In order of preference, pandoc will look for Lua filters in

1. a specified full or relative path,

2. $DATADIR/filters where $DATADIR is the user data directory (see
--data-dir, above).

Filters, Lua filters, and citeproc processing are applied in the order speci-
fied on the command line.

-M KEY [=VAL], --metadata=KEY [:VAL] Set the metadata field KEY to
the value VAL. A value specified on the command line overrides a value
specified in the document using YAML metadata blocks. Values will be
parsed as YAML boolean or string values. If no value is specified, the value
will be treated as Boolean true. Like --variable, --metadata causes
template variables to be set. But unlike --variable, --metadata affects
the metadata of the underlying document (which is accessible from filters
and may be printed in some output formats) and metadata values will be
escaped when inserted into the template.

--metadata-file=FILE Read metadata from the supplied YAML (or JSON)
file. This option can be used with every input format, but string scalars
in the metadata file will always be parsed as Markdown. (If the input
format is Markdown or a Markdown variant, then the same variant will be
used to parse the metadata file; if it is a non-Markdown format, pandoc’s
default Markdown extensions will be used.) This option can be used
repeatedly to include multiple metadata files; values in files specified later
on the command line will be preferred over those specified in earlier files.
Metadata values specified inside the document, or by using -M, overwrite
values specified with this option. The file will be searched for first in the

10

https://pandoc.org/lua-filters.html

working directory, and then in the metadata subdirectory of the user data
directory (see --data-dir).

-p, --preserve-tabs[=true|false] Preserve tabs instead of converting them
to spaces. (By default, pandoc converts tabs to spaces before parsing its
input.) Note that this will only affect tabs in literal code spans and code
blocks. Tabs in regular text are always treated as spaces.

--tab-stop=NUMBER Specify the number of spaces per tab (default is 4).

--track-changes=accept|reject|all Specifies what to do with inser-
tions, deletions, and comments produced by the MS Word “Track
Changes” feature. accept (the default) processes all the insertions
and deletions. reject ignores them. Both accept and reject ig-
nore comments. all includes all insertions, deletions, and comments,
wrapped in spans with insertion, deletion, comment-start, and
comment-end classes, respectively. The author and time of change
is included. all is useful for scripting: only accepting changes from
a certain reviewer, say, or before a certain date. If a paragraph is
inserted or deleted, track-changes=all produces a span with the
class paragraph-insertion/paragraph-deletion before the affected
paragraph break. This option only affects the docx reader.

--extract-media=DIR Extract images and other media contained in or linked
from the source document to the path DIR, creating it if necessary, and
adjust the images references in the document so they point to the extracted
files. Media are downloaded, read from the file system, or extracted from
a binary container (e.g. docx), as needed. The original file paths are
used if they are relative paths not containing ... Otherwise filenames are
constructed from the SHA1 hash of the contents.

--abbreviations=FILE Specifies a custom abbreviations file, with abbre-
viations one to a line. If this option is not specified, pandoc will
read the data file abbreviations from the user data directory or fall
back on a system default. To see the system default, use pandoc
--print-default-data-file=abbreviations. The only use pandoc
makes of this list is in the Markdown reader. Strings found in this list
will be followed by a nonbreaking space, and the period will not produce
sentence-ending space in formats like LaTeX. The strings may not contain
spaces.

--trace[=true|false] Print diagnostic output tracing parser progress to
stderr. This option is intended for use by developers in diagnosing
performance issues.

General writer options
-s, --standalone Produce output with an appropriate header and footer

(e.g. a standalone HTML, LaTeX, TEI, or RTF file, not a fragment).

11

This option is set automatically for pdf, epub, epub3, fb2, docx, and odt
output. For native output, this option causes metadata to be included;
otherwise, metadata is suppressed.

--template=FILE|URL Use the specified file as a custom template for the
generated document. Implies --standalone. See Templates, below, for a
description of template syntax. If the template is not found, pandoc will
search for it in the templates subdirectory of the user data directory (see
--data-dir). If no extension is specified and an extensionless template is
not found, pandoc will look for a template with an extension corresponding
to the writer, so that --template=special looks for special.html for
HTML output. If this option is not used, a default template appropriate
for the output format will be used (see -D/--print-default-template).

-V KEY [=VAL], --variable=KEY [:VAL] Set the template variable KEY
to the string value VAL when rendering the document in standalone mode.
If no VAL is specified, the key will be given the value true. Structured
values (lists, maps) cannot be assigned using this option, but they can be
assigned in the variables section of a defaults file.

--sandbox[=true|false] Run pandoc in a sandbox, limiting IO operations
in readers and writers to reading the files specified on the command line.
Note that this option does not limit IO operations by filters or in the
production of PDF documents. But it does offer security against, for
example, disclosure of files through the use of include directives. Anyone
using pandoc on untrusted user input should use this option.

Note: some readers and writers (e.g., docx) need access to data files. If
these are stored on the file system, then pandoc will not be able to find
them when run in --sandbox mode and will raise an error. For these
applications, we recommend using a pandoc binary compiled with the
embed_data_files option, which causes the data files to be baked into
the binary instead of being stored on the file system.

-D FORMAT, --print-default-template=FORMAT Print the system de-
fault template for an output FORMAT. (See -t for a list of possible FOR-
MATs.) Templates in the user data directory are ignored. This option may
be used with -o/--output to redirect output to a file, but -o/--output
must come before --print-default-template on the command line.

Note that some of the default templates use partials, for example
styles.html. To print the partials, use --print-default-data-file:
for example, --print-default-data-file=templates/styles.html.

--print-default-data-file=FILE Print a system default data file. Files
in the user data directory are ignored. This option may be used with
-o/--output to redirect output to a file, but -o/--output must come
before --print-default-data-file on the command line.

--eol=crlf|lf|native Manually specify line endings: crlf (Windows), lf

12

(macOS/Linux/UNIX), or native (line endings appropriate to the OS
on which pandoc is being run). The default is native.

--dpi=NUMBER Specify the default dpi (dots per inch) value for conversion
from pixels to inch/centimeters and vice versa. (Technically, the correct
term would be ppi: pixels per inch.) The default is 96dpi. When images
contain information about dpi internally, the encoded value is used instead
of the default specified by this option.

--wrap=auto|none|preserve Determine how text is wrapped in the output (the
source code, not the rendered version). With auto (the default), pandoc
will attempt to wrap lines to the column width specified by --columns
(default 72). With none, pandoc will not wrap lines at all. With preserve,
pandoc will attempt to preserve the wrapping from the source document
(that is, where there are nonsemantic newlines in the source, there will be
nonsemantic newlines in the output as well). In ipynb output, this option
affects wrapping of the contents of Markdown cells.

--columns=NUMBER Specify length of lines in characters. This affects text
wrapping in the generated source code (see --wrap). It also affects calcu-
lation of column widths for plain text tables (see Tables below).

--toc[=true|false], --table-of-contents[=true|false] Include an auto-
matically generated table of contents (or, in the case of latex, context,
docx, odt, opendocument, rst, or ms, an instruction to create one) in the
output document. This option has no effect unless -s/--standalone is
used, and it has no effect on man, docbook4, docbook5, or jats output.

Note that if you are producing a PDF via ms, the table of contents
will appear at the beginning of the document, before the title. If
you would prefer it to be at the end of the document, use the option
--pdf-engine-opt=--no-toc-relocation.

--toc-depth=NUMBER Specify the number of section levels to include in
the table of contents. The default is 3 (which means that level-1, 2, and 3
headings will be listed in the contents).

--lof[=true|false], --list-of-figures[=true|false] Include an auto-
matically generated list of figures (or, in some formats, an instruction
to create one) in the output document. This option has no effect unless
-s/--standalone is used, and it only has an effect on latex, context,
and docx output.

--lot[=true|false], --list-of-tables[=true|false] Include an automat-
ically generated list of tables (or, in some formats, an instruction to
create one) in the output document. This option has no effect unless
-s/--standalone is used, and it only has an effect on latex, context,
and docx output.

--strip-comments[=true|false] Strip out HTML comments in the Mark-

13

down or Textile source, rather than passing them on to Markdown, Textile
or HTML output as raw HTML. This does not apply to HTML comments
inside raw HTML blocks when the markdown_in_html_blocks extension
is not set.

--no-highlight Disables syntax highlighting for code blocks and inlines, even
when a language attribute is given.

--highlight-style=STYLE|FILE Specifies the coloring style to be used
in highlighted source code. Options are pygments (the default), kate,
monochrome, breezeDark, espresso, zenburn, haddock, and tango.
For more information on syntax highlighting in pandoc, see Syntax
highlighting, below. See also --list-highlight-styles.

Instead of a STYLE name, a JSON file with extension .theme may be
supplied. This will be parsed as a KDE syntax highlighting theme and (if
valid) used as the highlighting style.

To generate the JSON version of an existing style, use --print-highlight-style.

--print-highlight-style=STYLE|FILE Prints a JSON version of a
highlighting style, which can be modified, saved with a .theme extension,
and used with --highlight-style. This option may be used with
-o/--output to redirect output to a file, but -o/--output must come
before --print-highlight-style on the command line.

--syntax-definition=FILE Instructs pandoc to load a KDE XML syntax
definition file, which will be used for syntax highlighting of appropriately
marked code blocks. This can be used to add support for new languages
or to use altered syntax definitions for existing languages. This option
may be repeated to add multiple syntax definitions.

-H FILE, --include-in-header=FILE|URL Include contents of FILE, ver-
batim, at the end of the header. This can be used, for example, to include
special CSS or JavaScript in HTML documents. This option can be used
repeatedly to include multiple files in the header. They will be included
in the order specified. Implies --standalone.

-B FILE, --include-before-body=FILE|URL Include contents of FILE,
verbatim, at the beginning of the document body (e.g. after the <body>
tag in HTML, or the \begin{document} command in LaTeX). This can
be used to include navigation bars or banners in HTML documents. This
option can be used repeatedly to include multiple files. They will be
included in the order specified. Implies --standalone. Note that if the
output format is odt, this file must be in OpenDocument XML format
suitable for insertion into the body of the document, and if the output is
docx, this file must be in appropriate OpenXML format.

-A FILE, --include-after-body=FILE|URL Include contents of FILE, ver-
batim, at the end of the document body (before the </body> tag in HTML,

14

or the \end{document} command in LaTeX). This option can be used re-
peatedly to include multiple files. They will be included in the order
specified. Implies --standalone. Note that if the output format is odt,
this file must be in OpenDocument XML format suitable for insertion into
the body of the document, and if the output is docx, this file must be in
appropriate OpenXML format.

--resource-path=SEARCHPATH List of paths to search for images and
other resources. The paths should be separated by : on Linux, UNIX,
and macOS systems, and by ; on Windows. If --resource-path is not
specified, the default resource path is the working directory. Note that,
if --resource-path is specified, the working directory must be explicitly
listed or it will not be searched. For example: --resource-path=.:test
will search the working directory and the test subdirectory, in that order.
This option can be used repeatedly. Search path components that come
later on the command line will be searched before those that come earlier,
so --resource-path foo:bar --resource-path baz:bim is equivalent
to --resource-path baz:bim:foo:bar. Note that this option only has
an effect when pandoc itself needs to find an image (e.g., in producing
a PDF or docx, or when --embed-resources is used.) It will not cause
image paths to be rewritten in other cases (e.g., when pandoc is generating
LaTeX or HTML).

--request-header=NAME:VAL Set the request header NAME to the value
VAL when making HTTP requests (for example, when a URL is given on
the command line, or when resources used in a document must be down-
loaded). If you’re behind a proxy, you also need to set the environment
variable http_proxy to http://....

--no-check-certificate[=true|false] Disable the certificate verification to
allow access to unsecure HTTP resources (for example when the certificate
is no longer valid or self signed).

Options affecting specific writers
--self-contained[=true|false] Deprecated synonym for --embed-resources

--standalone.

--embed-resources[=true|false] Produce a standalone HTML file with no
external dependencies, using data: URIs to incorporate the contents of
linked scripts, stylesheets, images, and videos. The resulting file should
be “self-contained,” in the sense that it needs no external files and no net
access to be displayed properly by a browser. This option works only with
HTML output formats, including html4, html5, html+lhs, html5+lhs,
s5, slidy, slideous, dzslides, and revealjs. Scripts, images, and
stylesheets at absolute URLs will be downloaded; those at relative URLs
will be sought relative to the working directory (if the first source file
is local) or relative to the base URL (if the first source file is remote).

15

Elements with the attribute data-external="1" will be left alone; the
documents they link to will not be incorporated in the document. Limita-
tion: resources that are loaded dynamically through JavaScript cannot be
incorporated; as a result, fonts may be missing when --mathjax is used,
and some advanced features (e.g. zoom or speaker notes) may not work in
an offline “self-contained” reveal.js slide show.

For SVG images, img tags with data: URIs are used, unless the image
has the class inline-svg, in which case an inline SVG element is inserted.
This approach is recommended when there are many occurrences of the
same SVG in a document, as <use> elements will be used to reduce dupli-
cation.

--link-images[=true|false] Include links to images instead of embedding
the images in ODT. (This option currently only affects ODT output.)

--html-q-tags[=true|false] Use <q> tags for quotes in HTML. (This option
only has an effect if the smart extension is enabled for the input format
used.)

--ascii[=true|false] Use only ASCII characters in output. Currently sup-
ported for XML and HTML formats (which use entities instead of UTF-8
when this option is selected), CommonMark, gfm, and Markdown (which
use entities), roff man and ms (which use hexadecimal escapes), and to a
limited degree LaTeX (which uses standard commands for accented char-
acters when possible).

--reference-links[=true|false] Use reference-style links, rather than
inline links, in writing Markdown or reStructuredText. By default inline
links are used. The placement of link references is affected by the
--reference-location option.

--reference-location=block|section|document Specify whether footnotes
(and references, if reference-links is set) are placed at the end of the
current (top-level) block, the current section, or the document. The
default is document. Currently this option only affects the markdown,
muse, html, epub, slidy, s5, slideous, dzslides, and revealjs writers.
In slide formats, specifying --reference-location=section will cause
notes to be rendered at the bottom of a slide.

--figure-caption-position=above|below Specify whether figure captions go
above or below figures (default is below). This option only affects HTML,
LaTeX, Docx, ODT, and Typst output.

--table-caption-position=above|below Specify whether table captions go
above or below tables (default is above). This option only affects HTML,
LaTeX, Docx, ODT, and Typst output.

--markdown-headings=setext|atx Specify whether to use ATX-style (#-
prefixed) or Setext-style (underlined) headings for level 1 and 2 headings

16

in Markdown output. (The default is atx.) ATX-style headings are
always used for levels 3+. This option also affects Markdown cells in
ipynb output.

--list-tables[=true|false] Render tables as list tables in RST output.

--top-level-division=default|section|chapter|part Treat top-level head-
ings as the given division type in LaTeX, ConTeXt, DocBook, and TEI
output. The hierarchy order is part, chapter, then section; all headings are
shifted such that the top-level heading becomes the specified type. The
default behavior is to determine the best division type via heuristics: un-
less other conditions apply, section is chosen. When the documentclass
variable is set to report, book, or memoir (unless the article option is
specified), chapter is implied as the setting for this option. If beamer
is the output format, specifying either chapter or part will cause top-
level headings to become \part{..}, while second-level headings remain
as their default type.

In Docx output, this option adds section breaks before first-level headings
if chapter is selected, and before first- and second-level headings if part
is selected. Footnote numbers will restart with each section break unless
the reference doc modifies this.

-N, --number-sections=[true|false] Number section headings in LaTeX,
ConTeXt, HTML, Docx, ms, or EPUB output. By default, sections are
not numbered. Sections with class unnumbered will never be numbered,
even if --number-sections is specified.

--number-offset=NUMBER[,NUMBER,…] Offsets for section heading
numbers. The first number is added to the section number for level-1
headings, the second for level-2 headings, and so on. So, for example,
if you want the first level-1 heading in your document to be numbered
“6” instead of “1”, specify --number-offset=5. If your document starts
with a level-2 heading which you want to be numbered “1.5”, specify
--number-offset=1,4. --number-offset only directly affects the
number of the first section heading in a document; subsequent numbers
increment in the normal way. Implies --number-sections. Currently
this feature only affects HTML and Docx output.

--listings[=true|false] Use the listings package for LaTeX code blocks.
The package does not support multi-byte encoding for source code. To
handle UTF-8 you would need to use a custom template. This issue is
fully documented here: Encoding issue with the listings package.

-i, --incremental[=true|false] Make list items in slide shows display in-
crementally (one by one). The default is for lists to be displayed all at
once.

--slide-level=NUMBER Specifies that headings with the specified level cre-
ate slides (for beamer, revealjs, pptx, s5, slidy, slideous, dzslides).

17

https://ctan.org/pkg/listings
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings#Encoding_issue

Headings above this level in the hierarchy are used to divide the slide
show into sections; headings below this level create subheads within a
slide. Valid values are 0-6. If a slide level of 0 is specified, slides will
not be split automatically on headings, and horizontal rules must be used
to indicate slide boundaries. If a slide level is not specified explicitly, the
slide level will be set automatically based on the contents of the document;
see Structuring the slide show.

--section-divs[=true|false] Wrap sections in <section> tags (or <div>
tags for html4), and attach identifiers to the enclosing <section> (or
<div>) rather than the heading itself (see Heading identifiers, below). This
option only affects HTML output (and does not affect HTML slide for-
mats).

--email-obfuscation=none|javascript|references Specify a method for ob-
fuscating mailto: links in HTML documents. none leaves mailto: links
as they are. javascript obfuscates them using JavaScript. references
obfuscates them by printing their letters as decimal or hexadecimal char-
acter references. The default is none.

--id-prefix=STRING Specify a prefix to be added to all identifiers and in-
ternal links in HTML and DocBook output, and to footnote numbers in
Markdown and Haddock output. This is useful for preventing duplicate
identifiers when generating fragments to be included in other pages.

-T STRING, --title-prefix=STRING Specify STRING as a prefix at the
beginning of the title that appears in the HTML header (but not in
the title as it appears at the beginning of the HTML body). Implies
--standalone.

-c URL, --css=URL Link to a CSS style sheet. This option can be used
repeatedly to include multiple files. They will be included in the order
specified. This option only affects HTML (including HTML slide shows)
and EPUB output. It should be used together with -s/--standalone,
because the link to the stylesheet goes in the document header.

A stylesheet is required for generating EPUB. If none is provided using
this option (or the css or stylesheet metadata fields), pandoc will look
for a file epub.css in the user data directory (see --data-dir). If it is
not found there, sensible defaults will be used.

--reference-doc=FILE|URL Use the specified file as a style reference in pro-
ducing a docx or ODT file.

Docx For best results, the reference docx should be a modified version of
a docx file produced using pandoc. The contents of the reference docx
are ignored, but its stylesheets and document properties (including
margins, page size, header, and footer) are used in the new docx. If no
reference docx is specified on the command line, pandoc will look for

18

a file reference.docx in the user data directory (see --data-dir).
If this is not found either, sensible defaults will be used.

To produce a custom reference.docx, first get a copy of the
default reference.docx: pandoc -o custom-reference.docx
--print-default-data-file reference.docx. Then open
custom-reference.docx in Word, modify the styles as you wish,
and save the file. For best results, do not make changes to this file
other than modifying the styles used by pandoc:

Paragraph styles:

• Normal
• Body Text
• First Paragraph
• Compact
• Title
• Subtitle
• Author
• Date
• Abstract
• AbstractTitle
• Bibliography
• Heading 1
• Heading 2
• Heading 3
• Heading 4
• Heading 5
• Heading 6
• Heading 7
• Heading 8
• Heading 9
• Block Text [for block quotes]
• Footnote Block Text [for block quotes in footnotes]
• Source Code
• Footnote Text
• Definition Term
• Definition
• Caption
• Table Caption
• Image Caption
• Figure
• Captioned Figure
• TOC Heading

Character styles:

• Default Paragraph Font

19

• Body Text Char
• Verbatim Char
• Footnote Reference
• Hyperlink
• Section Number

Table style:

• Table

ODT For best results, the reference ODT should be a modified version
of an ODT produced using pandoc. The contents of the reference
ODT are ignored, but its stylesheets are used in the new ODT. If no
reference ODT is specified on the command line, pandoc will look for
a file reference.odt in the user data directory (see --data-dir). If
this is not found either, sensible defaults will be used.

To produce a custom reference.odt, first get a copy of the
default reference.odt: pandoc -o custom-reference.odt
--print-default-data-file reference.odt. Then open
custom-reference.odt in LibreOffice, modify the styles as
you wish, and save the file.

PowerPoint Templates included with Microsoft PowerPoint 2013 (either
with .pptx or .potx extension) are known to work, as are most
templates derived from these.

The specific requirement is that the template should contain layouts
with the following names (as seen within PowerPoint):

• Title Slide
• Title and Content
• Section Header
• Two Content
• Comparison
• Content with Caption
• Blank

For each name, the first layout found with that name will be used.
If no layout is found with one of the names, pandoc will output a
warning and use the layout with that name from the default reference
doc instead. (How these layouts are used is described in PowerPoint
layout choice.)

All templates included with a recent version of MS PowerPoint will
fit these criteria. (You can click on Layout under the Home menu to
check.)

You can also modify the default reference.pptx: first run pandoc
-o custom-reference.pptx --print-default-data-file
reference.pptx, and then modify custom-reference.pptx in

20

MS PowerPoint (pandoc will use the layouts with the names listed
above).

--split-level=NUMBER Specify the heading level at which to split an
EPUB or chunked HTML document into separate files. The default is
to split into chapters at level-1 headings. In the case of EPUB, this option
only affects the internal composition of the EPUB, not the way chapters
and sections are displayed to users. Some readers may be slow if the chap-
ter files are too large, so for large documents with few level-1 headings,
one might want to use a chapter level of 2 or 3. For chunked HTML, this
option determines how much content goes in each “chunk.”

--chunk-template=PATHTEMPLATE Specify a template for the filenames
in a chunkedhtml document. In the template, %n will be replaced by the
chunk number (padded with leading 0s to 3 digits), %s with the section
number of the chunk, %h with the heading text (with formatting removed),
%i with the section identifier. For example, %section-%s-%i.html might
be resolved to section-1.1-introduction.html. The characters / and
\ are not allowed in chunk templates and will be ignored. The default is
%s-%i.html.

--epub-chapter-level=NUMBER Deprecated synonym for --split-level.

--epub-cover-image=FILE Use the specified image as the EPUB cover.
It is recommended that the image be less than 1000px in width and
height. Note that in a Markdown source document you can also specify
cover-image in a YAML metadata block (see EPUB Metadata, below).

--epub-title-page=true|false Determines whether a the title page is in-
cluded in the EPUB (default is true).

--epub-metadata=FILE Look in the specified XML file for metadata for the
EPUB. The file should contain a series of Dublin Core elements. For
example:

<dc:rights>Creative Commons</dc:rights>
<dc:language>es-AR</dc:language>

By default, pandoc will include the following metadata elements:
<dc:title> (from the document title), <dc:creator> (from the docu-
ment authors), <dc:date> (from the document date, which should be
in ISO 8601 format), <dc:language> (from the lang variable, or, if is
not set, the locale), and <dc:identifier id="BookId"> (a randomly
generated UUID). Any of these may be overridden by elements in the
metadata file.

Note: if the source document is Markdown, a YAML metadata block in
the document can be used instead. See below under EPUB Metadata.

--epub-embed-font=FILE Embed the specified font in the EPUB. This option
can be repeated to embed multiple fonts. Wildcards can also be used:

21

https://www.dublincore.org/specifications/dublin-core/dces/
https://www.w3.org/TR/NOTE-datetime

for example, DejaVuSans-*.ttf. However, if you use wildcards on the
command line, be sure to escape them or put the whole filename in single
quotes, to prevent them from being interpreted by the shell. To use the
embedded fonts, you will need to add declarations like the following to
your CSS (see --css):

@font-face {
font-family: DejaVuSans;
font-style: normal;
font-weight: normal;
src:url("../fonts/DejaVuSans-Regular.ttf");

}
@font-face {

font-family: DejaVuSans;
font-style: normal;
font-weight: bold;
src:url("../fonts/DejaVuSans-Bold.ttf");

}
@font-face {

font-family: DejaVuSans;
font-style: italic;
font-weight: normal;
src:url("../fonts/DejaVuSans-Oblique.ttf");

}
@font-face {

font-family: DejaVuSans;
font-style: italic;
font-weight: bold;
src:url("../fonts/DejaVuSans-BoldOblique.ttf");

}
body { font-family: "DejaVuSans"; }

--epub-subdirectory=DIRNAME Specify the subdirectory in the OCF con-
tainer that is to hold the EPUB-specific contents. The default is EPUB. To
put the EPUB contents in the top level, use an empty string.

--ipynb-output=all|none|best Determines how ipynb output cells are
treated. all means that all of the data formats included in the original
are preserved. none means that the contents of data cells are omitted.
best causes pandoc to try to pick the richest data block in each output
cell that is compatible with the output format. The default is best.

--pdf-engine=PROGRAM Use the specified engine when producing PDF
output. Valid values are pdflatex, lualatex, xelatex, latexmk,
tectonic, wkhtmltopdf, weasyprint, pagedjs-cli, prince, context,
pdfroff, and typst. If the engine is not in your PATH, the full path of
the engine may be specified here. If this option is not specified, pandoc
uses the following defaults depending on the output format specified

22

using -t/--to:

• -t latex or none: pdflatex (other options: xelatex, lualatex,
tectonic, latexmk)

• -t context: context
• -t html: weasyprint (other options: prince, wkhtmltopdf,

pagedjs-cli; see print-css.rocks for a good introduction to PDF
generation from HTML/CSS)

• -t ms: pdfroff
• -t typst: typst

--pdf-engine-opt=STRING Use the given string as a command-line argu-
ment to the pdf-engine. For example, to use a persistent directory foo
for latexmk’s auxiliary files, use --pdf-engine-opt=-outdir=foo. Note
that no check for duplicate options is done.

Citation rendering
-C, --citeproc Process the citations in the file, replacing them with rendered

citations and adding a bibliography. Citation processing will not take
place unless bibliographic data is supplied, either through an external file
specified using the --bibliography option or the bibliography field in
metadata, or via a references section in metadata containing a list of ci-
tations in CSL YAML format with Markdown formatting. The style is con-
trolled by a CSL stylesheet specified using the --csl option or the csl field
in metadata. (If no stylesheet is specified, the chicago-author-date style
will be used by default.) The citation processing transformation may be
applied before or after filters or Lua filters (see --filter, --lua-filter):
these transformations are applied in the order they appear on the com-
mand line. For more information, see the section on Citations.

Note: if this option is specified, the citations extension will be disabled
automatically in the writer, to ensure that the citeproc-generated citations
will be rendered instead of the format’s own citation syntax.

--bibliography=FILE Set the bibliography field in the document’s meta-
data to FILE, overriding any value set in the metadata. If you supply
this argument multiple times, each FILE will be added to bibliography.
If FILE is a URL, it will be fetched via HTTP. If FILE is not found rel-
ative to the working directory, it will be sought in the resource path (see
--resource-path).

--csl=FILE Set the csl field in the document’s metadata to FILE, overrid-
ing any value set in the metadata. (This is equivalent to --metadata
csl=FILE.) If FILE is a URL, it will be fetched via HTTP. If FILE is not
found relative to the working directory, it will be sought in the resource
path (see --resource-path) and finally in the csl subdirectory of the
pandoc user data directory.

23

https://print-css.rocks
https://docs.citationstyles.org/en/stable/specification.html

--citation-abbreviations=FILE Set the citation-abbreviations field
in the document’s metadata to FILE, overriding any value set in the meta-
data. (This is equivalent to --metadata citation-abbreviations=FILE.)
If FILE is a URL, it will be fetched via HTTP. If FILE is not found
relative to the working directory, it will be sought in the resource path
(see --resource-path) and finally in the csl subdirectory of the pandoc
user data directory.

--natbib Use natbib for citations in LaTeX output. This option is not for use
with the --citeproc option or with PDF output. It is intended for use
in producing a LaTeX file that can be processed with bibtex.

--biblatex Use biblatex for citations in LaTeX output. This option is not
for use with the --citeproc option or with PDF output. It is intended
for use in producing a LaTeX file that can be processed with bibtex or
biber.

Math rendering in HTML
The default is to render TeX math as far as possible using Unicode characters.
Formulas are put inside a span with class="math", so that they may be styled
differently from the surrounding text if needed. However, this gives acceptable
results only for basic math, usually you will want to use --mathjax or another
of the following options.

--mathjax[=URL] Use MathJax to display embedded TeX math in HTML
output. TeX math will be put between \(...\) (for inline math) or
\[...\] (for display math) and wrapped in tags with class math.
Then the MathJax JavaScript will render it. The URL should point to the
MathJax.js load script. If a URL is not provided, a link to the Cloudflare
CDN will be inserted.

--mathml Convert TeX math to MathML (in epub3, docbook4, docbook5, jats,
html4 and html5). This is the default in odt output. MathML is sup-
ported natively by the main web browsers and select e-book readers.

--webtex[=URL] Convert TeX formulas to tags that link to an external
script that converts formulas to images. The formula will be URL-encoded
and concatenated with the URL provided. For SVG images you can for
example use --webtex https://latex.codecogs.com/svg.latex?. If
no URL is specified, the CodeCogs URL generating PNGs will be used
(https://latex.codecogs.com/png.latex?). Note: the --webtex op-
tion will affect Markdown output as well as HTML, which is useful if
you’re targeting a version of Markdown without native math support.

--katex[=URL] Use KaTeX to display embedded TeX math in HTML out-
put. The URL is the base URL for the KaTeX library. That directory
should contain a katex.min.js and a katex.min.css file. If a URL is
not provided, a link to the KaTeX CDN will be inserted.

24

https://ctan.org/pkg/natbib
https://ctan.org/pkg/bibtex
https://ctan.org/pkg/biblatex
https://ctan.org/pkg/bibtex
https://ctan.org/pkg/biber
https://www.mathjax.org
https://www.w3.org/Math/
https://github.com/Khan/KaTeX

--gladtex Enclose TeX math in <eq> tags in HTML output. The resulting
HTML can then be processed by GladTeX to produce SVG images of the
typeset formulas and an HTML file with these images embedded.

pandoc -s --gladtex input.md -o myfile.htex
gladtex -d image_dir myfile.htex
produces myfile.html and images in image_dir

Options for wrapper scripts
--dump-args[=true|false] Print information about command-line argu-

ments to stdout, then exit. This option is intended primarily for use in
wrapper scripts. The first line of output contains the name of the output
file specified with the -o option, or - (for stdout) if no output file was
specified. The remaining lines contain the command-line arguments, one
per line, in the order they appear. These do not include regular pandoc
options and their arguments, but do include any options appearing after
a -- separator at the end of the line.

--ignore-args[=true|false] Ignore command-line arguments (for use in
wrapper scripts). Regular pandoc options are not ignored. Thus, for
example,

pandoc --ignore-args -o foo.html -s foo.txt -- -e latin1

is equivalent to

pandoc -o foo.html -s

Exit codes
If pandoc completes successfully, it will return exit code 0. Nonzero exit codes
have the following meanings:

Code Error
1 PandocIOError
3 PandocFailOnWarningError
4 PandocAppError
5 PandocTemplateError
6 PandocOptionError
21 PandocUnknownReaderError
22 PandocUnknownWriterError
23 PandocUnsupportedExtensionError
24 PandocCiteprocError
25 PandocBibliographyError
31 PandocEpubSubdirectoryError
43 PandocPDFError

25

https://humenda.github.io/GladTeX/

Code Error
44 PandocXMLError
47 PandocPDFProgramNotFoundError
61 PandocHttpError
62 PandocShouldNeverHappenError
63 PandocSomeError
64 PandocParseError
66 PandocMakePDFError
67 PandocSyntaxMapError
83 PandocFilterError
84 PandocLuaError
89 PandocNoScriptingEngine
91 PandocMacroLoop
92 PandocUTF8DecodingError
93 PandocIpynbDecodingError
94 PandocUnsupportedCharsetError
97 PandocCouldNotFindDataFileError
98 PandocCouldNotFindMetadataFileError
99 PandocResourceNotFound

Defaults files
The --defaults option may be used to specify a package of options, in the
form of a YAML file.

Fields that are omitted will just have their regular default values. So a defaults
file can be as simple as one line:

verbosity: INFO

In fields that expect a file path (or list of file paths), the following syntax may
be used to interpolate environment variables:

csl: ${HOME}/mycsldir/special.csl

${USERDATA}may also be used; this will always resolve to the user data directory
that is current when the defaults file is parsed, regardless of the setting of the
environment variable USERDATA.

${.} will resolve to the directory containing the defaults file itself. This allows
you to refer to resources contained in that directory:

epub-cover-image: ${.}/cover.jpg
epub-metadata: ${.}/meta.xml
resource-path:
- . # the working directory from which pandoc is run

26

- ${.}/images # the images subdirectory of the directory
containing this defaults file

This environment variable interpolation syntax only works in fields that expect
file paths.

Defaults files can be placed in the defaults subdirectory of the user data direc-
tory and used from any directory. For example, one could create a file specifying
defaults for writing letters, save it as letter.yaml in the defaults subdirectory
of the user data directory, and then invoke these defaults from any directory
using pandoc --defaults letter or pandoc -dletter.

When multiple defaults are used, their contents will be combined.

Note that, where command-line arguments may be repeated (--metadata-file,
--css, --include-in-header, --include-before-body, --include-after-body,
--variable, --metadata, --syntax-definition), the values specified on the
command line will combine with values specified in the defaults file, rather
than replacing them.

The following tables show the mapping between the command line and defaults
file entries.

command line defaults file
foo.md input-file: foo.md
foo.md bar.md input-files:

- foo.md
- bar.md

The value of input-files may be left empty to indicate input from stdin, and
it can be an empty sequence [] for no input.

General options

command line defaults file
--from markdown+emoji from: markdown+emoji

reader: markdown+emoji
--to markdown+hard_line_breaks to: markdown+hard_line_breaks

writer: markdown+hard_line_breaks
--output foo.pdf output-file: foo.pdf
--output - output-file:
--data-dir dir data-dir: dir
--defaults file defaults:

- file
--verbose verbosity: INFO
--quiet verbosity: ERROR

27

command line defaults file
--fail-if-warnings fail-if-warnings: true
--sandbox sandbox: true
--log=FILE log-file: FILE

Options specified in a defaults file itself always have priority over those in an-
other file included with a defaults: entry.

verbosity can have the values ERROR, WARNING, or INFO.

Reader options

command line defaults file
--shift-heading-level-by -1 shift-heading-level-by: -1
--indented-code-classes python indented-code-classes:

- python
--default-image-extension ".jpg" default-image-extension: '.jpg'
--file-scope file-scope: true
--citeproc \
--lua-filter count-words.lua \
--filter special.lua

filters:
- citeproc
- count-words.lua
- type: json

path: special.lua
--metadata key=value \
--metadata key2

metadata:
key: value
key2: true

--metadata-file meta.yaml metadata-files:
- meta.yaml

metadata-file: meta.yaml
--preserve-tabs preserve-tabs: true
--tab-stop 8 tab-stop: 8
--track-changes accept track-changes: accept
--extract-media dir extract-media: dir
--abbreviations abbrevs.txt abbreviations: abbrevs.txt
--trace trace: true

Metadata values specified in a defaults file are parsed as literal string text, not
Markdown.

Filters will be assumed to be Lua filters if they have the .lua extension, and
JSON filters otherwise. But the filter type can also be specified explicitly, as
shown. Filters are run in the order specified. To include the built-in citeproc
filter, use either citeproc or {type: citeproc}.

28

General writer options

command line defaults file
--standalone standalone: true
--template letter template: letter
--variable key=val \
--variable key2

variables:
key: val
key2: true

--eol nl eol: nl
--dpi 300 dpi: 300
--wrap 60 wrap: 60
--columns 72 columns: 72
--table-of-contents table-of-contents: true
--toc toc: true
--toc-depth 3 toc-depth: 3
--strip-comments strip-comments: true
--no-highlight highlight-style: null
--highlight-style kate highlight-style: kate
--syntax-definition mylang.xml syntax-definitions:

- mylang.xml
syntax-definition: mylang.xml

--include-in-header inc.tex include-in-header:
- inc.tex

--include-before-body inc.tex include-before-body:
- inc.tex

--include-after-body inc.tex include-after-body:
- inc.tex

--resource-path .:foo resource-path: ['.','foo']
--request-header foo:bar request-headers:

- ["User-Agent", "Mozilla/5.0"]
--no-check-certificate no-check-certificate: true

Options affecting specific writers

command line defaults file
--self-contained self-contained: true
--link-images link-images: true
--html-q-tags html-q-tags: true
--ascii ascii: true
--reference-links reference-links: true
--reference-location block reference-location: block
--figure-caption-position=above figure-caption-position: above
--table-caption-position=below table-caption-position: below
--markdown-headings atx markdown-headings: atx

29

command line defaults file
--list-tables list-tables: true
--top-level-division chapter top-level-division: chapter
--number-sections number-sections: true
--number-offset=1,4 number-offset: \[1,4\]
--listings listings: true
--list-of-figures list-of-figures: true
--lof lof: true
--list-of-tables list-of-tables: true
--lot lot: true
--incremental incremental: true
--slide-level 2 slide-level: 2
--section-divs section-divs: true
--email-obfuscation references email-obfuscation: references
--id-prefix ch1 identifier-prefix: ch1
--title-prefix MySite title-prefix: MySite
--css styles/screen.css \
--css styles/special.css

css:
- styles/screen.css
- styles/special.css

--reference-doc my.docx reference-doc: my.docx
--epub-cover-image cover.jpg epub-cover-image: cover.jpg
--epub-title-page=false epub-title-page: false
--epub-metadata meta.xml epub-metadata: meta.xml
--epub-embed-font special.otf \
--epub-embed-font headline.otf

epub-fonts:
- special.otf
- headline.otf

--split-level 2 split-level: 2
--chunk-template="%i.html" chunk-template: "%i.html"
--epub-subdirectory="" epub-subdirectory: ''
--ipynb-output best ipynb-output: best
--pdf-engine xelatex pdf-engine: xelatex
--pdf-engine-opt=--shell-escape pdf-engine-opts:

- '-shell-escape'
pdf-engine-opt: '-shell-escape'

Citation rendering

command line defaults file
--citeproc citeproc: true
--bibliography logic.bib bibliography: logic.bib
--csl ieee.csl csl: ieee.csl
--citation-abbreviations ab.json citation-abbreviations: ab.json
--natbib cite-method: natbib
--biblatex cite-method: biblatex

30

command line defaults file

cite-method can be citeproc, natbib, or biblatex. This only affects LaTeX
output. If you want to use citeproc to format citations, you should also set
‘citeproc: true’.

If you need control over when the citeproc processing is done relative to other
filters, you should instead use citeproc in the list of filters (see Reader
options).

Math rendering in HTML

command line defaults file
--mathjax html-math-method:

method: mathjax
--mathml html-math-method:

method: mathml
--webtex html-math-method:

method: webtex
--katex html-math-method:

method: katex
--gladtex html-math-method:

method: gladtex

In addition to the values listed above, method can have the value plain.

If the command line option accepts a URL argument, an url: field can be
added to html-math-method:.

Options for wrapper scripts

command line defaults file
--dump-args dump-args: true
--ignore-args ignore-args: true

Templates
When the -s/--standalone option is used, pandoc uses a template to add
header and footer material that is needed for a self-standing document. To see
the default template that is used, just type

pandoc -D *FORMAT*

31

where FORMAT is the name of the output format. A custom template can
be specified using the --template option. You can also override the system
default templates for a given output format FORMAT by putting a file
templates/default.*FORMAT* in the user data directory (see --data-dir,
above). Exceptions:

• For odt output, customize the default.opendocument template.
• For docx output, customize the default.openxml template.
• For pdf output, customize the default.latex template (or the

default.context template, if you use -t context, or the default.ms
template, if you use -t ms, or the default.html template, if you use -t
html).

• pptx has no template.

Note that docx, odt, and pptx output can also be customized using
--reference-doc. Use a reference doc to adjust the styles in your document;
use a template to handle variable interpolation and customize the presentation
of metadata, the position of the table of contents, boilerplate text, etc.

Templates contain variables, which allow for the inclusion of arbitrary informa-
tion at any point in the file. They may be set at the command line using the
-V/--variable option. If a variable is not set, pandoc will look for the key
in the document’s metadata, which can be set using either YAML metadata
blocks or with the -M/--metadata option. In addition, some variables are given
default values by pandoc. See Variables below for a list of variables used in
pandoc’s default templates.

If you use custom templates, you may need to revise them as pandoc changes.
We recommend tracking the changes in the default templates, and modifying
your custom templates accordingly. An easy way to do this is to fork the pandoc-
templates repository and merge in changes after each pandoc release.

Template syntax
Comments

Anything between the sequence $-- and the end of the line will be treated as a
comment and omitted from the output.

Delimiters

To mark variables and control structures in the template, either $…$ or ${…}
may be used as delimiters. The styles may also be mixed in the same template,
but the opening and closing delimiter must match in each case. The opening
delimiter may be followed by one or more spaces or tabs, which will be ignored.
The closing delimiter may be preceded by one or more spaces or tabs, which
will be ignored.

To include a literal $ in the document, use $$.

32

https://github.com/jgm/pandoc-templates
https://github.com/jgm/pandoc-templates

Interpolated variables

A slot for an interpolated variable is a variable name surrounded by matched
delimiters. Variable names must begin with a letter and can contain letters,
numbers, _, -, and .. The keywords it, if, else, endif, for, sep, and endfor
may not be used as variable names. Examples:

foo
$foo.bar.baz$
$foo_bar.baz-bim$
$ foo $
${foo}
${foo.bar.baz}
${foo_bar.baz-bim}
${ foo }

Variable names with periods are used to get at structured variable values. So,
for example, employee.salary will return the value of the salary field of the
object that is the value of the employee field.

• If the value of the variable is a simple value, it will be rendered verbatim.
(Note that no escaping is done; the assumption is that the calling program
will escape the strings appropriately for the output format.)

• If the value is a list, the values will be concatenated.
• If the value is a map, the string true will be rendered.
• Every other value will be rendered as the empty string.

Conditionals

A conditional begins with if(variable) (enclosed in matched delimiters) and
ends with endif (enclosed in matched delimiters). It may optionally contain
an else (enclosed in matched delimiters). The if section is used if variable
has a true value, otherwise the else section is used (if present). The following
values count as true:

• any map
• any array containing at least one true value
• any nonempty string
• boolean True

Note that in YAML metadata (and metadata specified on the command line
using -M/--metadata), unquoted true and false will be interpreted as Boolean
values. But a variable specified on the command line using -V/--variable will
always be given a string value. Hence a conditional if(foo) will be triggered
if you use -V foo=false, but not if you use -M foo=false.

Examples:

$if(foo)$bar$endif$

33

$if(foo)$
foo

$endif$

$if(foo)$
part one
$else$
part two
$endif$

${if(foo)}bar${endif}

${if(foo)}
${foo}

${endif}

${if(foo)}
${ foo.bar }
${else}
no foo!
${endif}

The keyword elseif may be used to simplify complex nested conditionals:

$if(foo)$
XXX
$elseif(bar)$
YYY
$else$
ZZZ
$endif$

For loops

A for loop begins with for(variable) (enclosed in matched delimiters) and
ends with endfor (enclosed in matched delimiters).

• If variable is an array, the material inside the loop will be evaluated
repeatedly, with variable being set to each value of the array in turn,
and concatenated.

• If variable is a map, the material inside will be set to the map.
• If the value of the associated variable is not an array or a map, a single

iteration will be performed on its value.

Examples:

$for(foo)$$foo$$sep$, $endfor$

34

$for(foo)$
- $foo.last$, $foo.first$

$endfor$

${ for(foo.bar) }
- ${ foo.bar.last }, ${ foo.bar.first }

${ endfor }

$for(mymap)$
$it.name$: $it.office$
$endfor$

You may optionally specify a separator between consecutive values using sep
(enclosed in matched delimiters). The material between sep and the endfor is
the separator.

${ for(foo) }${ foo }${ sep }, ${ endfor }

Instead of using variable inside the loop, the special anaphoric keyword it
may be used.

${ for(foo.bar) }
- ${ it.last }, ${ it.first }

${ endfor }

Partials

Partials (subtemplates stored in different files) may be included by using the
name of the partial, followed by (), for example:

${ styles() }

Partials will be sought in the directory containing the main template. The file
name will be assumed to have the same extension as the main template if it lacks
an extension. When calling the partial, the full name including file extension
can also be used:

${ styles.html() }

(If a partial is not found in the directory of the template and the template path
is given as a relative path, it will also be sought in the templates subdirectory
of the user data directory.)

Partials may optionally be applied to variables using a colon:

${ date:fancy() }

${ articles:bibentry() }

If articles is an array, this will iterate over its values, applying the partial
bibentry() to each one. So the second example above is equivalent to

35

${ for(articles) }
${ it:bibentry() }
${ endfor }

Note that the anaphoric keyword it must be used when iterating over partials.
In the above examples, the bibentry partial should contain it.title (and so
on) instead of articles.title.

Final newlines are omitted from included partials.

Partials may include other partials.

A separator between values of an array may be specified in square brackets,
immediately after the variable name or partial:

${months[,]}

${articles:bibentry()[;]}

The separator in this case is literal and (unlike with sep in an explicit for loop)
cannot contain interpolated variables or other template directives.

Nesting

To ensure that content is “nested,” that is, subsequent lines indented, use the ^
directive:

$item.number$ $^$$item.description$ ($item.price$)

In this example, if item.description has multiple lines, they will all be in-
dented to line up with the first line:

00123 A fine bottle of 18-year old
Oban whiskey. ($148)

To nest multiple lines to the same level, align them with the ^ directive in the
template. For example:

$item.number$ $^$$item.description$ ($item.price$)
(Available til $item.sellby$.)

will produce

00123 A fine bottle of 18-year old
Oban whiskey. ($148)
(Available til March 30, 2020.)

If a variable occurs by itself on a line, preceded by whitespace and not followed
by further text or directives on the same line, and the variable’s value contains
multiple lines, it will be nested automatically.

36

Breakable spaces

Normally, spaces in the template itself (as opposed to values of the interpolated
variables) are not breakable, but they can be made breakable in part of the
template by using the ~ keyword (ended with another ~).

$~$This long line may break if the document is rendered
with a short line length.$~$

Pipes

A pipe transforms the value of a variable or partial. Pipes are specified using a
slash (/) between the variable name (or partial) and the pipe name. Example:

$for(name)$
$name/uppercase$
$endfor$

$for(metadata/pairs)$
- $it.key$: $it.value$
$endfor$

$employee:name()/uppercase$

Pipes may be chained:

$for(employees/pairs)$
$it.key/alpha/uppercase$. $it.name$
$endfor$

Some pipes take parameters:

|----------------------|------------|
$for(employee)$
$it.name.first/uppercase/left 20 "| "$$it.name.salary/right 10 " | " " |"$
$endfor$
|----------------------|------------|

Currently the following pipes are predefined:

• pairs: Converts a map or array to an array of maps, each with key and
value fields. If the original value was an array, the key will be the array
index, starting with 1.

• uppercase: Converts text to uppercase.

• lowercase: Converts text to lowercase.

• length: Returns the length of the value: number of characters for a
textual value, number of elements for a map or array.

37

• reverse: Reverses a textual value or array, and has no effect on other
values.

• first: Returns the first value of an array, if applied to a non-empty array;
otherwise returns the original value.

• last: Returns the last value of an array, if applied to a non-empty array;
otherwise returns the original value.

• rest: Returns all but the first value of an array, if applied to a non-empty
array; otherwise returns the original value.

• allbutlast: Returns all but the last value of an array, if applied to a
non-empty array; otherwise returns the original value.

• chomp: Removes trailing newlines (and breakable space).

• nowrap: Disables line wrapping on breakable spaces.

• alpha: Converts textual values that can be read as an integer into low-
ercase alphabetic characters a..z (mod 26). This can be used to get
lettered enumeration from array indices. To get uppercase letters, chain
with uppercase.

• roman: Converts textual values that can be read as an integer into lower-
case roman numerals. This can be used to get lettered enumeration from
array indices. To get uppercase roman, chain with uppercase.

• left n "leftborder" "rightborder": Renders a textual value in a
block of width n, aligned to the left, with an optional left and right border.
Has no effect on other values. This can be used to align material in
tables. Widths are positive integers indicating the number of characters.
Borders are strings inside double quotes; literal " and \ characters must
be backslash-escaped.

• right n "leftborder" "rightborder": Renders a textual value in a
block of width n, aligned to the right, and has no effect on other values.

• center n "leftborder" "rightborder": Renders a textual value in a
block of width n, aligned to the center, and has no effect on other values.

Variables
Metadata variables

title, author, date allow identification of basic aspects of the document. In-
cluded in PDF metadata through LaTeX and ConTeXt. These can be
set through a pandoc title block, which allows for multiple authors, or
through a YAML metadata block:

author:

38

- Aristotle
- Peter Abelard
...

Note that if you just want to set PDF or HTML metadata, without in-
cluding a title block in the document itself, you can set the title-meta,
author-meta, and date-meta variables. (By default these are set auto-
matically, based on title, author, and date.) The page title in HTML
is set by pagetitle, which is equal to title by default.

subtitle document subtitle, included in HTML, EPUB, LaTeX, ConTeXt, and
docx documents

abstract document summary, included in HTML, LaTeX, ConTeXt, AsciiDoc,
and docx documents

abstract-title title of abstract, currently used only in HTML, EPUB, and
docx. This will be set automatically to a localized value, depending on
lang, but can be manually overridden.

keywords list of keywords to be included in HTML, PDF, ODT, pptx, docx
and AsciiDoc metadata; repeat as for author, above

subject document subject, included in ODT, PDF, docx, EPUB, and pptx
metadata

description document description, included in ODT, docx and pptx metadata.
Some applications show this as Comments metadata.

category document category, included in docx and pptx metadata

Additionally, any root-level string metadata, not included in ODT, docx or pptx
metadata is added as a custom property. The following YAML metadata block
for instance:

title: 'This is the title'
subtitle: "This is the subtitle"
author:
- Author One
- Author Two
description: |

This is a long
description.

It consists of two paragraphs
...

will include title, author and description as standard document properties
and subtitle as a custom property when converting to docx, ODT or pptx.

39

https://yaml.org/spec/1.2/spec.html

Language variables

lang identifies the main language of the document using IETF language tags
(following the BCP 47 standard), such as en or en-GB. The Language sub-
tag lookup tool can look up or verify these tags. This affects most formats,
and controls hyphenation in PDF output when using LaTeX (through
babel and polyglossia) or ConTeXt.

Use native pandoc Divs and Spans with the lang attribute to switch the
language:

lang: en-GB
...

Text in the main document language (British English).

::: {lang=fr-CA}
> Cette citation est écrite en français canadien.
:::

More text in English. ['Zitat auf Deutsch.']{lang=de}

dir the base script direction, either rtl (right-to-left) or ltr (left-to-right).

For bidirectional documents, native pandoc spans and divs with the dir
attribute (value rtl or ltr) can be used to override the base direction
in some output formats. This may not always be necessary if the final
renderer (e.g. the browser, when generating HTML) supports the Unicode
Bidirectional Algorithm.

When using LaTeX for bidirectional documents, only the xelatex engine
is fully supported (use --pdf-engine=xelatex).

Variables for HTML

document-css Enables inclusion of most of the CSS in the styles.html partial
(have a look with pandoc --print-default-data-file=templates/styles.html).
Unless you use --css, this variable is set to true by default. You can
disable it with e.g. pandoc -M document-css=false.

mainfont sets the CSS font-family property on the html element.
fontsize sets the base CSS font-size, which you’d usually set to e.g. 20px,

but it also accepts pt (12pt = 16px in most browsers).
fontcolor sets the CSS color property on the html element.
linkcolor sets the CSS color property on all links.
monofont sets the CSS font-family property on code elements.
monobackgroundcolor sets the CSS background-color property on code ele-

ments and adds extra padding.

40

https://tools.ietf.org/html/bcp47
https://r12a.github.io/app-subtags/
https://r12a.github.io/app-subtags/
https://ctan.org/pkg/babel
https://ctan.org/pkg/polyglossia
https://www.w3.org/International/articles/inline-bidi-markup/uba-basics
https://www.w3.org/International/articles/inline-bidi-markup/uba-basics
https://developer.mozilla.org/en-US/docs/Learn/CSS

linestretch sets the CSS line-height property on the html element, which
is preferred to be unitless.

maxwidth sets the CSS max-width property (default is 36em).
backgroundcolor sets the CSS background-color property on the html ele-

ment.
margin-left, margin-right, margin-top, margin-bottom sets the corre-

sponding CSS padding properties on the body element.

To override or extend some CSS for just one document, include for example:

header-includes: |
<style>
blockquote {
font-style: italic;

}
tr.even {
background-color: #f0f0f0;

}
td, th {
padding: 0.5em 2em 0.5em 0.5em;

}
tbody {
border-bottom: none;

}
</style>

Variables for HTML math

classoption when using --katex, you can render display math equations flush
left using YAML metadata or with -M classoption=fleqn.

Variables for HTML slides

These affect HTML output when producing slide shows with pandoc.

institute author affiliations: can be a list when there are multiple authors
revealjs-url base URL for reveal.js documents (defaults to https://unpkg.com/reveal.js@^4/)
s5-url base URL for S5 documents (defaults to s5/default)
slidy-url base URL for Slidy documents (defaults to https://www.w3.org/Talks/Tools/Slidy2)
slideous-url base URL for Slideous documents (defaults to slideous)
title-slide-attributes additional attributes for the title slide of reveal.js

slide shows. See background in reveal.js, beamer, and pptx for an example.

All reveal.js configuration options are available as variables. To turn off boolean
flags that default to true in reveal.js, use 0.

41

https://developer.mozilla.org/en-US/docs/Learn/CSS
https://revealjs.com/config/

Variables for Beamer slides

These variables change the appearance of PDF slides using beamer.

aspectratio slide aspect ratio (43 for 4:3 [default], 169 for 16:9, 1610 for 16:10,
149 for 14:9, 141 for 1.41:1, 54 for 5:4, 32 for 3:2)

beameroption add extra beamer option with \setbeameroption{}
institute author affiliations: can be a list when there are multiple authors
logo logo image for slides
navigation controls navigation symbols (default is empty for no navigation

symbols; other valid values are frame, vertical, and horizontal)
section-titles enables “title pages” for new sections (default is true)
theme, colortheme, fonttheme, innertheme, outertheme beamer themes
themeoptions, colorthemeoptions, fontthemeoptions, innerthemeoptions, outerthemeoptions

options for LaTeX beamer themes (lists)
titlegraphic image for title slide: can be a list
titlegraphicoptions options for title slide image
shorttitle, shortsubtitle, shortauthor, shortinstitute, shortdate

some beamer themes use short versions of the title, subtitle, author,
institute, date

Variables for PowerPoint

These variables control the visual aspects of a slide show that are not easily
controlled via templates.

monofont font to use for code.

Variables for LaTeX

Pandoc uses these variables when creating a PDF with a LaTeX engine.

Layout

block-headings make \paragraph and \subparagraph (fourth- and fifth-
level headings, or fifth- and sixth-level with book classes) free-standing
rather than run-in; requires further formatting to distinguish from
\subsubsection (third- or fourth-level headings). Instead of using this
option, KOMA-Script can adjust headings more extensively:

documentclass: scrartcl
header-includes: |
\RedeclareSectionCommand[
beforeskip=-10pt plus -2pt minus -1pt,
afterskip=1sp plus -1sp minus 1sp,
font=\normalfont\itshape]{paragraph}

\RedeclareSectionCommand[

42

https://ctan.org/pkg/beamer
https://ctan.org/pkg/koma-script

beforeskip=-10pt plus -2pt minus -1pt,
afterskip=1sp plus -1sp minus 1sp,
font=\normalfont\scshape,
indent=0pt]{subparagraph}

...

classoption option for document class, e.g. oneside; repeat for multiple op-
tions:

classoption:
- twocolumn
- landscape
...

documentclass document class: usually one of the standard classes, article,
book, and report; the KOMA-Script equivalents, scrartcl, scrbook,
and scrreprt, which default to smaller margins; or memoir

geometry option for geometry package, e.g. margin=1in; repeat for multiple
options:

geometry:
- top=30mm
- left=20mm
- heightrounded
...

hyperrefoptions option for hyperref package, e.g. linktoc=all; repeat for
multiple options:

hyperrefoptions:
- linktoc=all
- pdfwindowui
- pdfpagemode=FullScreen
...

indent if true, pandoc will use document class settings for indentation (the
default LaTeX template otherwise removes indentation and adds space
between paragraphs)

linestretch adjusts line spacing using the setspace package, e.g. 1.25, 1.5

margin-left, margin-right, margin-top, margin-bottom sets margins if
geometry is not used (otherwise geometry overrides these)

pagestyle control \pagestyle{}: the default article class supports plain (de-
fault), empty (no running heads or page numbers), and headings (section
titles in running heads)

43

https://ctan.org/pkg/article
https://ctan.org/pkg/book
https://ctan.org/pkg/report
https://ctan.org/pkg/koma-script
https://ctan.org/pkg/memoir
https://ctan.org/pkg/geometry
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/setspace

papersize paper size, e.g. letter, a4

secnumdepth numbering depth for sections (with --number-sections option
or numbersections variable)

beamerarticle produce an article from Beamer slides. Note: if you set
this variable, you must specify the beamer writer but use the default
LaTeX template: for example, pandoc -Vbeamerarticle -t beamer
--template default.latex.

handout produce a handout version of Beamer slides (with overlays condensed
into single slides)

csquotes load csquotes package and use \enquote or \enquote* for quoted
text.

csquotesoptions options to use for csquotes package (repeat for multiple
options).

babeloptions options to pass to the babel package (may be repeated for mul-
tiple options). This defaults to provide=* if the main language isn’t a
European language written with Latin or Cyrillic script or Vietnamese.
Most users will not need to adjust the default setting.

Fonts

fontenc allows font encoding to be specified through fontenc package (with
pdflatex); default is T1 (see LaTeX font encodings guide)

fontfamily font package for use with pdflatex: TeX Live includes many op-
tions, documented in the LaTeX Font Catalogue. The default is Latin
Modern.

fontfamilyoptions options for package used as fontfamily; repeat for mul-
tiple options. For example, to use the Libertine font with proportional
lowercase (old-style) figures through the libertinus package:

fontfamily: libertinus
fontfamilyoptions:
- osf
- p
...

fontsize font size for body text. The standard classes allow 10pt, 11pt, and
12pt. To use another size, set documentclass to one of the KOMA-Script
classes, such as scrartcl or scrbook.

mainfont, sansfont, monofont, mathfont, CJKmainfont, CJKsansfont, CJKmonofont
font families for use with xelatex or lualatex: take the name of any

44

https://ctan.org/pkg/encguide
https://www.tug.org/texlive/
https://tug.org/FontCatalogue/
https://ctan.org/pkg/lm
https://ctan.org/pkg/lm
https://ctan.org/pkg/libertinus
https://ctan.org/pkg/koma-script

system font, using the fontspec package. CJKmainfont uses the xecjk
package if xelatex is used, or the luatexja package if lualatex is used.

mainfontoptions, sansfontoptions, monofontoptions, mathfontoptions, CJKoptions, luatexjapresetoptions
options to use with mainfont, sansfont, monofont, mathfont,
CJKmainfont in xelatex and lualatex. Allow for any choices available
through fontspec; repeat for multiple options. For example, to use the
TeX Gyre version of Palatino with lowercase figures:

mainfont: TeX Gyre Pagella
mainfontoptions:
- Numbers=Lowercase
- Numbers=Proportional
...

mainfontfallback, sansfontfallback, monofontfallback fonts to try if a
glyph isn’t found in mainfont, sansfont, or monofont respectively. These
are lists. The font name must be followed by a colon and optionally a set
of options, for example:

mainfontfallback:
- "FreeSans:"
- "NotoColorEmoji:mode=harf"

...

Font fallbacks currently only work with lualatex.

babelfonts a map of Babel language names (e.g. chinese) to the font to be
used with the language:

babelfonts:
chinese-hant: "Noto Serif CJK TC"
russian: "Noto Serif"

...

microtypeoptions options to pass to the microtype package

Links

colorlinks add color to link text; automatically enabled if any of linkcolor,
filecolor, citecolor, urlcolor, or toccolor are set

boxlinks add visible box around links (has no effect if colorlinks is set)
linkcolor, filecolor, citecolor, urlcolor, toccolor color for internal

links, external links, citation links, linked URLs, and links in table of
contents, respectively: uses options allowed by xcolor, including the
dvipsnames, svgnames, and x11names lists

links-as-notes causes links to be printed as footnotes

45

https://ctan.org/pkg/fontspec
https://ctan.org/pkg/xecjk
https://ctan.org/pkg/luatexja
https://ctan.org/pkg/fontspec
http://www.gust.org.pl/projects/e-foundry/tex-gyre
https://ctan.org/pkg/xcolor

urlstyle style for URLs (e.g., tt, rm, sf, and, the default, same)

Front matter

lof, lot include list of figures, list of tables (can also be set using
--lof/--list-of-figures, --lot/--list-of-tables)

thanks contents of acknowledgments footnote after document title
toc include table of contents (can also be set using --toc/--table-of-contents)
toc-depth level of section to include in table of contents

BibLaTeX Bibliographies These variables function when using BibLaTeX
for citation rendering.

biblatexoptions list of options for biblatex
biblio-style bibliography style, when used with --natbib and --biblatex
biblio-title bibliography title, when used with --natbib and --biblatex
bibliography bibliography to use for resolving references
natbiboptions list of options for natbib

Variables for ConTeXt

Pandoc uses these variables when creating a PDF with ConTeXt.

fontsize font size for body text (e.g. 10pt, 12pt)
headertext, footertext text to be placed in running header or footer (see

ConTeXt Headers and Footers); repeat up to four times for different place-
ment

indenting controls indentation of paragraphs, e.g. yes,small,next (see Con-
TeXt Indentation); repeat for multiple options

interlinespace adjusts line spacing, e.g. 4ex (using setupinterlinespace);
repeat for multiple options

layout options for page margins and text arrangement (see ConTeXt Layout);
repeat for multiple options

linkcolor, contrastcolor color for links outside and inside a page, e.g. red,
blue (see ConTeXt Color)

linkstyle typeface style for links, e.g. normal, bold, slanted, boldslanted,
type, cap, small

lof, lot include list of figures, list of tables
mainfont, sansfont, monofont, mathfont font families: take the name of any

system font (see ConTeXt Font Switching)
mainfontfallback, sansfontfallback, monofontfallback list of fonts

to try, in order, if a glyph is not found in the main font. Use
\definefallbackfamily-compatible font name syntax. Emoji fonts are
unsupported.

margin-left, margin-right, margin-top, margin-bottom sets margins, if
layout is not used (otherwise layout overrides these)

46

https://wiki.contextgarden.net/Headers_and_Footers
https://wiki.contextgarden.net/Indentation
https://wiki.contextgarden.net/Indentation
https://wiki.contextgarden.net/Command/setupinterlinespace
https://wiki.contextgarden.net/Layout
https://wiki.contextgarden.net/Color
https://wiki.contextgarden.net/Font_Switching

pagenumbering page number style and location (using setuppagenumbering);
repeat for multiple options

papersize paper size, e.g. letter, A4, landscape (see ConTeXt Paper Setup);
repeat for multiple options

pdfa adds to the preamble the setup necessary to generate PDF/A of the type
specified, e.g. 1a:2005, 2a. If no type is specified (i.e. the value is set
to True, by e.g. --metadata=pdfa or pdfa: true in a YAML metadata
block), 1b:2005 will be used as default, for reasons of backwards compat-
ibility. Using --variable=pdfa without specified value is not supported.
To successfully generate PDF/A the required ICC color profiles have to
be available and the content and all included files (such as images) have
to be standard-conforming. The ICC profiles and output intent may be
specified using the variables pdfaiccprofile and pdfaintent. See also
ConTeXt PDFA for more details.

pdfaiccprofile when used in conjunction with pdfa, specifies the ICC profile
to use in the PDF, e.g. default.cmyk. If left unspecified, sRGB.icc is
used as default. May be repeated to include multiple profiles. Note that
the profiles have to be available on the system. They can be obtained
from ConTeXt ICC Profiles.

pdfaintent when used in conjunction with pdfa, specifies the output intent for
the colors, e.g. ISO coated v2 300\letterpercent\space (ECI) If left
unspecified, sRGB IEC61966-2.1 is used as default.

toc include table of contents (can also be set using --toc/--table-of-contents)
urlstyle typeface style for links without link text, e.g. normal, bold, slanted,

boldslanted, type, cap, small
whitespace spacing between paragraphs, e.g. none, small (using setupwhitespace)
includesource include all source documents as file attachments in the PDF

file

Variables for wkhtmltopdf

Pandoc uses these variables when creating a PDF with wkhtmltopdf. The --css
option also affects the output.

footer-html, header-html add information to the header and footer
margin-left, margin-right, margin-top, margin-bottom set the page mar-

gins
papersize sets the PDF paper size

Variables for man pages

adjusting adjusts text to left (l), right (r), center (c), or both (b) margins
footer footer in man pages
header header in man pages
section section number in man pages

47

https://wiki.contextgarden.net/Command/setuppagenumbering
https://wiki.contextgarden.net/PaperSetup
https://wiki.contextgarden.net/PDF/A
https://wiki.contextgarden.net/PDFX#ICC_profiles
https://wiki.contextgarden.net/Command/setupwhitespace
https://wkhtmltopdf.org

Variables for Texinfo

version version of software (used in title and title page)
filename name of info file to be generated (defaults to a name based on the

texi filename)

Variables for Typst

template Typst template to use.
margin A dictionary with the fields defined in the Typst documentation: x, y,

top, bottom, left, right.
papersize Paper size: a4, us-letter, etc.
mainfont Name of system font to use for the main font.
fontsize Font size (e.g., 12pt).
section-numbering Schema to use for numbering sections, e.g. 1.A.1.
page-numbering Schema to use for numbering pages, e.g. 1 or i, or an empty

string to omit page numbering.
columns Number of columns for body text.

Variables for ms

fontfamily A (Avant Garde), B (Bookman), C (Helvetica), HN (Helvetica Nar-
row), P (Palatino), or T (Times New Roman). This setting does not affect
source code, which is always displayed using monospace Courier. These
built-in fonts are limited in their coverage of characters. Additional fonts
may be installed using the script install-font.sh provided by Peter
Schaffter and documented in detail on his web site.

indent paragraph indent (e.g. 2m)
lineheight line height (e.g. 12p)
pointsize point size (e.g. 10p)

Variables set automatically

Pandoc sets these variables automatically in response to options or document
contents; users can also modify them. These vary depending on the output
format, and include the following:

body body of document

date-meta the date variable converted to ISO 8601 YYYY-MM-DD, included
in all HTML based formats (dzslides, epub, html, html4, html5, revealjs,
s5, slideous, slidy). The recognized formats for date are: mm/dd/yyyy,
mm/dd/yy, yyyy-mm-dd (ISO 8601), dd MM yyyy (e.g. either 02 Apr 2018
or 02 April 2018), MM dd, yyyy (e.g. Apr. 02, 2018 or April 02,
2018),yyyy[mm[dd]](e.g.20180402, 201804 or 2018).

header-includes contents specified by -H/--include-in-header (may have
multiple values)

48

https://www.schaffter.ca/mom/bin/install-font.sh
https://www.schaffter.ca/mom/momdoc/appendices.html#steps

include-before contents specified by -B/--include-before-body (may have
multiple values)

include-after contents specified by -A/--include-after-body (may have
multiple values)

meta-json JSON representation of all of the document’s metadata. Field values
are transformed to the selected output format.

numbersections non-null value if -N/--number-sections was specified

sourcefile, outputfile source and destination filenames, as given on the
command line. sourcefile can also be a list if input comes from mul-
tiple files, or empty if input is from stdin. You can use the following
snippet in your template to distinguish them:

$if(sourcefile)$
$for(sourcefile)$
$sourcefile$
$endfor$
$else$
(stdin)
$endif$

Similarly, outputfile can be - if output goes to the terminal.

If you need absolute paths, use e.g. $curdir$/$sourcefile$.

curdir working directory from which pandoc is run.

pandoc-version pandoc version.

toc non-null value if --toc/--table-of-contents was specified

toc-title title of table of contents (works only with EPUB, HTML, revealjs,
opendocument, odt, docx, pptx, beamer, LaTeX). Note that in docx and
pptx a custom toc-title will be picked up from metadata, but cannot
be set as a variable.

Extensions
The behavior of some of the readers and writers can be adjusted by enabling or
disabling various extensions.

An extension can be enabled by adding +EXTENSION to the format name and dis-
abled by adding -EXTENSION. For example, --from markdown_strict+footnotes
is strict Markdown with footnotes enabled, while --from markdown-footnotes-pipe_tables
is pandoc’s Markdown without footnotes or pipe tables.

The Markdown reader and writer make by far the most use of extensions. Exten-
sions only used by them are therefore covered in the section Pandoc’s Markdown

49

below (see Markdown variants for commonmark and gfm). In the following, ex-
tensions that also work for other formats are covered.

Note that Markdown extensions added to the ipynb format affect Mark-
down cells in Jupyter notebooks (as do command-line options like
--markdown-headings).

Typography
Extension: smart

Interpret straight quotes as curly quotes, --- as em-dashes, -- as en-dashes,
and ... as ellipses. Nonbreaking spaces are inserted after certain abbreviations,
such as “Mr.”

This extension can be enabled/disabled for the following formats:

input formats markdown, commonmark, latex, mediawiki, org, rst, twiki,
html

output formats markdown, latex, context, rst
enabled by default in markdown, latex, context (both input and output)

Note: If you are writing Markdown, then the smart extension has the reverse
effect: what would have been curly quotes comes out straight.

In LaTeX, smart means to use the standard TeX ligatures for quotation marks
(`` and '' for double quotes, ` and ' for single quotes) and dashes (-- for
en-dash and --- for em-dash). If smart is disabled, then in reading LaTeX
pandoc will parse these characters literally. In writing LaTeX, enabling smart
tells pandoc to use the ligatures when possible; if smart is disabled pandoc will
use unicode quotation mark and dash characters.

Headings and sections
Extension: auto_identifiers

A heading without an explicitly specified identifier will be automatically as-
signed a unique identifier based on the heading text.

This extension can be enabled/disabled for the following formats:

input formats markdown, latex, rst, mediawiki, textile
output formats markdown, muse
enabled by default in markdown, muse

The default algorithm used to derive the identifier from the heading text is:

• Remove all formatting, links, etc.
• Remove all footnotes.
• Remove all non-alphanumeric characters, except underscores, hyphens,

and periods.

50

• Replace all spaces and newlines with hyphens.
• Convert all alphabetic characters to lowercase.
• Remove everything up to the first letter (identifiers may not begin with a

number or punctuation mark).
• If nothing is left after this, use the identifier section.

Thus, for example,

Heading Identifier
Heading identifiers in HTML heading-identifiers-in-html
Maître d'hôtel maître-dhôtel
Dogs?--in *my* house? dogs--in-my-house
[HTML], [S5], or [RTF]? html-s5-or-rtf
3. Applications applications
33 section

These rules should, in most cases, allow one to determine the identifier from the
heading text. The exception is when several headings have the same text; in
this case, the first will get an identifier as described above; the second will get
the same identifier with -1 appended; the third with -2; and so on.

(However, a different algorithm is used if gfm_auto_identifiers is enabled;
see below.)

These identifiers are used to provide link targets in the table of contents gen-
erated by the --toc|--table-of-contents option. They also make it easy to
provide links from one section of a document to another. A link to this section,
for example, might look like this:

See the section on
[heading identifiers](#heading-identifiers-in-html-latex-and-context).

Note, however, that this method of providing links to sections works only in
HTML, LaTeX, and ConTeXt formats.

If the --section-divs option is specified, then each section will be wrapped in
a section (or a div, if html4 was specified), and the identifier will be attached
to the enclosing <section> (or <div>) tag rather than the heading itself. This
allows entire sections to be manipulated using JavaScript or treated differently
in CSS.

Extension: ascii_identifiers

Causes the identifiers produced by auto_identifiers to be pure ASCII. Ac-
cents are stripped off of accented Latin letters, and non-Latin letters are omitted.

51

Extension: gfm_auto_identifiers

Changes the algorithm used by auto_identifiers to conform to GitHub’s
method. Spaces are converted to dashes (-), uppercase characters to lower-
case characters, and punctuation characters other than - and _ are removed.
Emojis are replaced by their names.

Math Input
The extensions tex_math_dollars, tex_math_gfm, tex_math_single_backslash,
and tex_math_double_backslash are described in the section about Pandoc’s
Markdown.

However, they can also be used with HTML input. This is handy for reading
web pages formatted using MathJax, for example.

Raw HTML/TeX
The following extensions are described in more detail in their respective sections
of Pandoc’s Markdown:

• raw_html allows HTML elements which are not representable in pandoc’s
AST to be parsed as raw HTML. By default, this is disabled for HTML
input.

• raw_tex allows raw LaTeX, TeX, and ConTeXt to be included in a doc-
ument. This extension can be enabled/disabled for the following formats
(in addition to markdown):

input formats latex, textile, html (environments, \ref, and \eqref
only), ipynb

output formats textile, commonmark

Note: as applied to ipynb, raw_html and raw_tex affect not only raw TeX
in Markdown cells, but data with mime type text/html in output cells.
Since the ipynb reader attempts to preserve the richest possible outputs
when several options are given, you will get best results if you disable
raw_html and raw_tex when converting to formats like docx which don’t
allow raw html or tex.

• native_divs causes HTML div elements to be parsed as native pan-
doc Div blocks. If you want them to be parsed as raw HTML, use -f
html-native_divs+raw_html.

• native_spans causes HTML span elements to be parsed as native pan-
doc Span inlines. If you want them to be parsed as raw HTML, use
-f html-native_spans+raw_html. If you want to drop all divs and
spans when converting HTML to Markdown, you can use pandoc -f
html-native_divs-native_spans -t markdown.

52

Literate Haskell support
Extension: literate_haskell

Treat the document as literate Haskell source.

This extension can be enabled/disabled for the following formats:

input formats markdown, rst, latex
output formats markdown, rst, latex, html

If you append +lhs (or +literate_haskell) to one of the formats above, pan-
doc will treat the document as literate Haskell source. This means that

• In Markdown input, “bird track” sections will be parsed as Haskell
code rather than block quotations. Text between \begin{code} and
\end{code} will also be treated as Haskell code. For ATX-style headings
the character ‘=’ will be used instead of ‘#’.

• In Markdown output, code blocks with classes haskell and literate will
be rendered using bird tracks, and block quotations will be indented one
space, so they will not be treated as Haskell code. In addition, headings
will be rendered setext-style (with underlines) rather than ATX-style (with
‘#’ characters). (This is because ghc treats ‘#’ characters in column 1 as
introducing line numbers.)

• In restructured text input, “bird track” sections will be parsed as Haskell
code.

• In restructured text output, code blocks with class haskell will be ren-
dered using bird tracks.

• In LaTeX input, text in code environments will be parsed as Haskell code.

• In LaTeX output, code blocks with class haskell will be rendered inside
code environments.

• In HTML output, code blocks with class haskell will be rendered with
class literatehaskell and bird tracks.

Examples:

pandoc -f markdown+lhs -t html

reads literate Haskell source formatted with Markdown conventions and writes
ordinary HTML (without bird tracks).

pandoc -f markdown+lhs -t html+lhs

writes HTML with the Haskell code in bird tracks, so it can be copied and
pasted as literate Haskell source.

Note that GHC expects the bird tracks in the first column, so indented literate
code blocks (e.g. inside an itemized environment) will not be picked up by the

53

Haskell compiler.

Other extensions
Extension: empty_paragraphs

Allows empty paragraphs. By default empty paragraphs are omitted.

This extension can be enabled/disabled for the following formats:

input formats docx, html
output formats docx, odt, opendocument, html, latex

Extension: native_numbering

Enables native numbering of figures and tables. Enumeration starts at 1.

This extension can be enabled/disabled for the following formats:

output formats odt, opendocument, docx

Extension: xrefs_name

Links to headings, figures and tables inside the document are substituted with
cross-references that will use the name or caption of the referenced item. The
original link text is replaced once the generated document is refreshed. This ex-
tension can be combined with xrefs_number in which case numbers will appear
before the name.

Text in cross-references is only made consistent with the referenced item once
the document has been refreshed.

This extension can be enabled/disabled for the following formats:

output formats odt, opendocument

Extension: xrefs_number

Links to headings, figures and tables inside the document are substituted with
cross-references that will use the number of the referenced item. The original
link text is discarded. This extension can be combined with xrefs_name in
which case the name or caption numbers will appear after the number.

For the xrefs_number to be useful heading numbers must be enabled in the
generated document, also table and figure captions must be enabled using for
example the native_numbering extension.

Numbers in cross-references are only visible in the final document once it has
been refreshed.

This extension can be enabled/disabled for the following formats:

output formats odt, opendocument

54

Extension: styles

When converting from docx, add custom-styles attributes for all docx styles,
regardless of whether pandoc understands the meanings of these styles. Because
attributes cannot be added directly to paragraphs or text in the pandoc AST,
paragraph styles will cause Divs to be created and character styles will cause
Spans to be created to hold the attributes. (Table styles will be added to the
Table elements directly.) This extension can be used with docx custom styles.

input formats docx

Extension: amuse

In the muse input format, this enables Text::Amuse extensions to Emacs Muse
markup.

Extension: raw_markdown

In the ipynb input format, this causes Markdown cells to be included as raw
Markdown blocks (allowing lossless round-tripping) rather than being parsed.
Use this only when you are targeting ipynb or a Markdown-based output format.

Extension: citations (typst)

When the citations extension is enabled in typst (as it is by default), typst
citations will be parsed as native pandoc citations, and native pandoc citations
will be rendered as typst citations.

Extension: citations (org)

When the citations extension is enabled in org, org-cite and org-ref style
citations will be parsed as native pandoc citations, and org-cite citations will be
used to render native pandoc citations.

Extension: citations (docx)

When citations is enabled in docx, citations inserted by Zotero or Mendeley
or EndNote plugins will be parsed as native pandoc citations. (Otherwise, the
formatted citations generated by the bibliographic software will be parsed as
regular text.)

Extension: fancy_lists (org)

Some aspects of Pandoc’s Markdown fancy lists are also accepted in org in-
put, mimicking the option org-list-allow-alphabetical in Emacs. As in
Org Mode, enabling this extension allows lowercase and uppercase alphabetical
markers for ordered lists to be parsed in addition to arabic ones. Note that for
Org, this does not include roman numerals or the # placeholder that are enabled
by the extension in Pandoc’s Markdown.

55

Extension: element_citations

In the jats output formats, this causes reference items to be replaced with
<element-citation> elements. These elements are not influenced by CSL
styles, but all information on the item is included in tags.

Extension: ntb

In the context output format this enables the use of Natural Tables (TABLE)
instead of the default Extreme Tables (xtables). Natural tables allow more fine-
grained global customization but come at a performance penalty compared to
extreme tables.

Extension: tagging

Enabling this extension with context output will produce markup suitable for
the production of tagged PDFs. This includes additional markers for paragraphs
and alternative markup for emphasized text. The emphasis-command template
variable is set if the extension is enabled.

Pandoc’s Markdown
Pandoc understands an extended and slightly revised version of John Gruber’s
Markdown syntax. This document explains the syntax, noting differences from
original Markdown. Except where noted, these differences can be suppressed
by using the markdown_strict format instead of markdown. Extensions can be
enabled or disabled to specify the behavior more granularly. They are described
in the following. See also Extensions above, for extensions that work also on
other formats.

Philosophy
Markdown is designed to be easy to write, and, even more importantly, easy to
read:

A Markdown-formatted document should be publishable as-is, as
plain text, without looking like it’s been marked up with tags or
formatting instructions.
– John Gruber

This principle has guided pandoc’s decisions in finding syntax for tables, foot-
notes, and other extensions.

There is, however, one respect in which pandoc’s aims are different from the
original aims of Markdown. Whereas Markdown was originally designed with
HTML generation in mind, pandoc is designed for multiple output formats.
Thus, while pandoc allows the embedding of raw HTML, it discourages it, and

56

https://wiki.contextgarden.net/TABLE
https://wiki.contextgarden.net/xtables
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/syntax#philosophy

provides other, non-HTMLish ways of representing important document ele-
ments like definition lists, tables, mathematics, and footnotes.

Paragraphs
A paragraph is one or more lines of text followed by one or more blank lines.
Newlines are treated as spaces, so you can reflow your paragraphs as you like.
If you need a hard line break, put two or more spaces at the end of a line.

Extension: escaped_line_breaks

A backslash followed by a newline is also a hard line break. Note: in multiline
and grid table cells, this is the only way to create a hard line break, since trailing
spaces in the cells are ignored.

Headings
There are two kinds of headings: Setext and ATX.

Setext-style headings

A setext-style heading is a line of text “underlined” with a row of = signs (for a
level-one heading) or - signs (for a level-two heading):

A level-one heading
===================

A level-two heading

The heading text can contain inline formatting, such as emphasis (see Inline
formatting, below).

ATX-style headings

An ATX-style heading consists of one to six # signs and a line of text, optionally
followed by any number of # signs. The number of # signs at the beginning of
the line is the heading level:

A level-two heading

A level-three heading

As with setext-style headings, the heading text can contain formatting:

A level-one heading with a [link](/url) and *emphasis*

57

Extension: blank_before_header

Original Markdown syntax does not require a blank line before a heading. Pan-
doc does require this (except, of course, at the beginning of the document).
The reason for the requirement is that it is all too easy for a # to end up at the
beginning of a line by accident (perhaps through line wrapping). Consider, for
example:

I like several of their flavors of ice cream:
#22, for example, and #5.

Extension: space_in_atx_header

Many Markdown implementations do not require a space between the opening
#s of an ATX heading and the heading text, so that #5 bolt and #hashtag
count as headings. With this extension, pandoc does require the space.

Heading identifiers

See also the auto_identifiers extension above.

Extension: header_attributes

Headings can be assigned attributes using this syntax at the end of the line
containing the heading text:

{#identifier .class .class key=value key=value}

Thus, for example, the following headings will all be assigned the identifier foo:

My heading {#foo}

My heading ## {#foo}

My other heading {#foo}

(This syntax is compatible with PHP Markdown Extra.)

Note that although this syntax allows assignment of classes and key/value at-
tributes, writers generally don’t use all of this information. Identifiers, classes,
and key/value attributes are used in HTML and HTML-based formats such as
EPUB and slidy. Identifiers are used for labels and link anchors in the LaTeX,
ConTeXt, Textile, Jira markup, and AsciiDoc writers.

Headings with the class unnumbered will not be numbered, even if
--number-sections is specified. A single hyphen (-) in an attribute context
is equivalent to .unnumbered, and preferable in non-English documents. So,

My heading {-}

58

https://michelf.ca/projects/php-markdown/extra/

is just the same as

My heading {.unnumbered}

If the unlisted class is present in addition to unnumbered, the heading will not
be included in a table of contents. (Currently this feature is only implemented
for certain formats: those based on LaTeX and HTML, PowerPoint, and RTF.)

Extension: implicit_header_references

Pandoc behaves as if reference links have been defined for each heading. So, to
link to a heading

Heading identifiers in HTML

you can simply write

[Heading identifiers in HTML]

or

[Heading identifiers in HTML][]

or

[the section on heading identifiers][heading identifiers in
HTML]

instead of giving the identifier explicitly:

[Heading identifiers in HTML](#heading-identifiers-in-html)

If there are multiple headings with identical text, the corresponding reference
will link to the first one only, and you will need to use explicit links to link to
the others, as described above.

Like regular reference links, these references are case-insensitive.

Explicit link reference definitions always take priority over implicit heading ref-
erences. So, in the following example, the link will point to bar, not to #foo:

Foo

[foo]: bar

See [foo]

Block quotations
Markdown uses email conventions for quoting blocks of text. A block quotation
is one or more paragraphs or other block elements (such as lists or headings),
with each line preceded by a > character and an optional space. (The > need not
start at the left margin, but it should not be indented more than three spaces.)

59

> This is a block quote. This
> paragraph has two lines.
>
> 1. This is a list inside a block quote.
> 2. Second item.

A “lazy” form, which requires the > character only on the first line of each block,
is also allowed:

> This is a block quote. This
paragraph has two lines.

> 1. This is a list inside a block quote.
2. Second item.

Among the block elements that can be contained in a block quote are other
block quotes. That is, block quotes can be nested:

> This is a block quote.
>
> > A block quote within a block quote.

If the > character is followed by an optional space, that space will be considered
part of the block quote marker and not part of the indentation of the contents.
Thus, to put an indented code block in a block quote, you need five spaces after
the >:

> code

Extension: blank_before_blockquote

Original Markdown syntax does not require a blank line before a block quote.
Pandoc does require this (except, of course, at the beginning of the document).
The reason for the requirement is that it is all too easy for a > to end up at the
beginning of a line by accident (perhaps through line wrapping). So, unless the
markdown_strict format is used, the following does not produce a nested block
quote in pandoc:

> This is a block quote.
>> Not nested, since `blank_before_blockquote` is enabled by default

Verbatim (code) blocks
Indented code blocks

A block of text indented four spaces (or one tab) is treated as verbatim text:
that is, special characters do not trigger special formatting, and all spaces and
line breaks are preserved. For example,

if (a > 3) {

60

moveShip(5 * gravity, DOWN);
}

The initial (four space or one tab) indentation is not considered part of the
verbatim text, and is removed in the output.

Note: blank lines in the verbatim text need not begin with four spaces.

Fenced code blocks

Extension: fenced_code_blocks

In addition to standard indented code blocks, pandoc supports fenced code
blocks. These begin with a row of three or more tildes (~) and end with a row
of tildes that must be at least as long as the starting row. Everything between
these lines is treated as code. No indentation is necessary:

~~~~~~~
if (a > 3) {
moveShip(5 * gravity, DOWN);

}
~~~~~~~

Like regular code blocks, fenced code blocks must be separated from surrounding
text by blank lines.

If the code itself contains a row of tildes or backticks, just use a longer row of
tildes or backticks at the start and end:

~~~~~~~~~~~~~~~~
~~~~~~~~~~
code including tildes
~~~~~~~~~~
~~~~~~~~~~~~~~~~

Extension: backtick_code_blocks

Same as fenced_code_blocks, but uses backticks (`) instead of tildes (~).

Extension: fenced_code_attributes

Optionally, you may attach attributes to fenced or backtick code block using
this syntax:

~~~~ {#mycode .haskell .numberLines startFrom="100"}
qsort [] = []
qsort (x:xs) = qsort (filter (< x) xs) ++ [x] ++

qsort (filter (>= x) xs)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

61

Here mycode is an identifier, haskell and numberLines are classes, and
startFrom is an attribute with value 100. Some output formats can use this
information to do syntax highlighting. Currently, the only output formats
that use this information are HTML, LaTeX, Docx, Ms, and PowerPoint.
If highlighting is supported for your output format and language, then the
code block above will appear highlighted, with numbered lines. (To see
which languages are supported, type pandoc --list-highlight-languages.)
Otherwise, the code block above will appear as follows:

<pre id="mycode" class="haskell numberLines" startFrom="100">
<code>
...
</code>

</pre>

The numberLines (or number-lines) class will cause the lines of the code block
to be numbered, starting with 1 or the value of the startFrom attribute. The
lineAnchors (or line-anchors) class will cause the lines to be clickable anchors
in HTML output.

A shortcut form can also be used for specifying the language of the code block:

```haskell
qsort [] = []
```

This is equivalent to:

``` {.haskell}
qsort [] = []
```

This shortcut form may be combined with attributes:

```haskell {.numberLines}
qsort [] = []
```

Which is equivalent to:

``` {.haskell .numberLines}
qsort [] = []
```

If the fenced_code_attributes extension is disabled, but input contains class
attribute(s) for the code block, the first class attribute will be printed after the
opening fence as a bare word.

To prevent all highlighting, use the --no-highlight flag. To set the highlight-
ing style, use --highlight-style. For more information on highlighting, see
Syntax highlighting, below.

62

Line blocks
Extension: line_blocks

A line block is a sequence of lines beginning with a vertical bar (|) followed by a
space. The division into lines will be preserved in the output, as will any leading
spaces; otherwise, the lines will be formatted as Markdown. This is useful for
verse and addresses:

| The limerick packs laughs anatomical
| In space that is quite economical.
| But the good ones I've seen
| So seldom are clean
| And the clean ones so seldom are comical

| 200 Main St.
| Berkeley, CA 94718

The lines can be hard-wrapped if needed, but the continuation line must begin
with a space.

| The Right Honorable Most Venerable and Righteous Samuel L.
Constable, Jr.

| 200 Main St.
| Berkeley, CA 94718

Inline formatting (such as emphasis) is allowed in the content (though it can’t
cross line boundaries). Block-level formatting (such as block quotes or lists) is
not recognized.

This syntax is borrowed from reStructuredText.

Lists
Bullet lists

A bullet list is a list of bulleted list items. A bulleted list item begins with a
bullet (*, +, or -). Here is a simple example:

* one
* two
* three

This will produce a “compact” list. If you want a “loose” list, in which each
item is formatted as a paragraph, put spaces between the items:

* one

* two

* three

63

https://docutils.sourceforge.io/docs/ref/rst/introduction.html

The bullets need not be flush with the left margin; they may be indented one,
two, or three spaces. The bullet must be followed by whitespace.

List items look best if subsequent lines are flush with the first line (after the
bullet):

* here is my first
list item.

* and my second.

But Markdown also allows a “lazy” format:

* here is my first
list item.
* and my second.

Block content in list items

A list item may contain multiple paragraphs and other block-level content. How-
ever, subsequent paragraphs must be preceded by a blank line and indented to
line up with the first non-space content after the list marker.

* First paragraph.

Continued.

* Second paragraph. With a code block, which must be indented
eight spaces:

{ code }

Exception: if the list marker is followed by an indented code block, which must
begin 5 spaces after the list marker, then subsequent paragraphs must begin
two columns after the last character of the list marker:

* code

continuation paragraph

List items may include other lists. In this case the preceding blank line is
optional. The nested list must be indented to line up with the first non-space
character after the list marker of the containing list item.

* fruits
+ apples
- macintosh
- red delicious

+ pears
+ peaches

* vegetables

64

+ broccoli
+ chard

As noted above, Markdown allows you to write list items “lazily,” instead of
indenting continuation lines. However, if there are multiple paragraphs or other
blocks in a list item, the first line of each must be indented.

+ A lazy, lazy, list
item.

+ Another one; this looks
bad but is legal.

Second paragraph of second
list item.

Ordered lists

Ordered lists work just like bulleted lists, except that the items begin with
enumerators rather than bullets.

In original Markdown, enumerators are decimal numbers followed by a period
and a space. The numbers themselves are ignored, so there is no difference
between this list:

1. one
2. two
3. three

and this one:

5. one
7. two
1. three

Extension: fancy_lists

Unlike original Markdown, pandoc allows ordered list items to be marked with
uppercase and lowercase letters and roman numerals, in addition to Arabic
numerals. List markers may be enclosed in parentheses or followed by a single
right-parenthesis or period. They must be separated from the text that follows
by at least one space, and, if the list marker is a capital letter with a period, by
at least two spaces.1

1The point of this rule is to ensure that normal paragraphs starting with people’s initials,
like
B. Russell won a Nobel Prize (but not for "On Denoting").

do not get treated as list items.
This rule will not prevent

(C) 2007 Joe Smith

65

The fancy_lists extension also allows ‘#’ to be used as an ordered list marker
in place of a numeral:

#. one
#. two

Note: the ‘#’ ordered list marker doesn’t work with commonmark.

Extension: startnum

Pandoc also pays attention to the type of list marker used, and to the starting
number, and both of these are preserved where possible in the output format.
Thus, the following yields a list with numbers followed by a single parenthesis,
starting with 9, and a sublist with lowercase roman numerals:

9) Ninth
10) Tenth
11) Eleventh

i. subone
ii. subtwo

iii. subthree

Pandoc will start a new list each time a different type of list marker is used. So,
the following will create three lists:

(2) Two
(5) Three
1. Four
* Five

If default list markers are desired, use #.:

#. one
#. two
#. three

Extension: task_lists

Pandoc supports task lists, using the syntax of GitHub-Flavored Markdown.

- [] an unchecked task list item
- [x] checked item

from being interpreted as a list item. In this case, a backslash escape can be used:
(C\) 2007 Joe Smith

66

Definition lists

Extension: definition_lists

Pandoc supports definition lists, using the syntax of PHP Markdown Extra with
some extensions.2

Term 1

: Definition 1

Term 2 with *inline markup*

: Definition 2

{ some code, part of Definition 2 }

Third paragraph of definition 2.

Each term must fit on one line, which may optionally be followed by a blank
line, and must be followed by one or more definitions. A definition begins with
a colon or tilde, which may be indented one or two spaces.

A term may have multiple definitions, and each definition may consist of one
or more block elements (paragraph, code block, list, etc.), each indented four
spaces or one tab stop. The body of the definition (not including the first line)
should be indented four spaces. However, as with other Markdown lists, you
can “lazily” omit indentation except at the beginning of a paragraph or other
block element:

Term 1

: Definition
with lazy continuation.

Second paragraph of the definition.

If you leave space before the definition (as in the example above), the text of
the definition will be treated as a paragraph. In some output formats, this
will mean greater spacing between term/definition pairs. For a more compact
definition list, omit the space before the definition:

Term 1
~ Definition 1

Term 2
~ Definition 2a
~ Definition 2b
2I have been influenced by the suggestions of David Wheeler.

67

https://michelf.ca/projects/php-markdown/extra/
https://justatheory.com/2009/02/modest-markdown-proposal/

Note that space between items in a definition list is required. (A variant that
loosens this requirement, but disallows “lazy” hard wrapping, can be activated
with the compact_definition_lists extension.)

Numbered example lists

Extension: example_lists

The special list marker @ can be used for sequentially numbered examples. The
first list item with a @ marker will be numbered ‘1’, the next ‘2’, and so on,
throughout the document. The numbered examples need not occur in a single
list; each new list using @ will take up where the last stopped. So, for example:

(@) My first example will be numbered (1).
(@) My second example will be numbered (2).

Explanation of examples.

(@) My third example will be numbered (3).

Numbered examples can be labeled and referred to elsewhere in the document:

(@good) This is a good example.

As (@good) illustrates, ...

The label can be any string of alphanumeric characters, underscores, or hyphens.

Continuation paragraphs in example lists must always be indented four spaces,
regardless of the length of the list marker. That is, example lists always behave
as if the four_space_rule extension is set. This is because example labels tend
to be long, and indenting content to the first non-space character after the label
would be awkward.

You can repeat an earlier numbered example by re-using its label:

(@foo) Sample sentence.

Intervening text...

This theory can explain the case we saw earlier (repeated):

(@foo) Sample sentence.

This only works reliably, though, if the repeated item is in a list by itself, because
each numbered example list will be numbered continuously from its starting
number.

Ending a list

What if you want to put an indented code block after a list?

68

- item one
- item two

{ my code block }

Trouble! Here pandoc (like other Markdown implementations) will treat { my
code block } as the second paragraph of item two, and not as a code block.

To “cut off” the list after item two, you can insert some non-indented content,
like an HTML comment, which won’t produce visible output in any format:

- item one
- item two

<!-- end of list -->

{ my code block }

You can use the same trick if you want two consecutive lists instead of one big
list:

1. one
2. two
3. three

<!-- -->

1. uno
2. dos
3. tres

Horizontal rules
A line containing a row of three or more *, -, or _ characters (optionally sepa-
rated by spaces) produces a horizontal rule:

* * * *

We strongly recommend that horizontal rules be separated from surrounding
text by blank lines. If a horizontal rule is not followed by a blank line, pandoc
may try to interpret the lines that follow as a YAML metadata block or a table.

Tables
Four kinds of tables may be used. The first three kinds presuppose the use of
a fixed-width font, such as Courier. The fourth kind can be used with propor-
tionally spaced fonts, as it does not require lining up columns.

69

Extension: table_captions

A caption may optionally be provided with all 4 kinds of tables (as illustrated
in the examples below). A caption is a paragraph beginning with the string
Table: (or table: or just :), which will be stripped off. It may appear either
before or after the table.

Extension: simple_tables

Simple tables look like this:

Right Left Center Default
------- ------ ---------- -------

12 12 12 12
123 123 123 123

1 1 1 1

Table: Demonstration of simple table syntax.

The header and table rows must each fit on one line. Column alignments are
determined by the position of the header text relative to the dashed line below
it:3

• If the dashed line is flush with the header text on the right side but extends
beyond it on the left, the column is right-aligned.

• If the dashed line is flush with the header text on the left side but extends
beyond it on the right, the column is left-aligned.

• If the dashed line extends beyond the header text on both sides, the column
is centered.

• If the dashed line is flush with the header text on both sides, the default
alignment is used (in most cases, this will be left).

The table must end with a blank line, or a line of dashes followed by a blank
line.

The column header row may be omitted, provided a dashed line is used to end
the table. For example:

------- ------ ---------- -------
12 12 12 12
123 123 123 123

1 1 1 1
------- ------ ---------- -------

When the header row is omitted, column alignments are determined on the basis
of the first line of the table body. So, in the tables above, the columns would
be right, left, center, and right aligned, respectively.

3This scheme is due to Michel Fortin, who proposed it on the Markdown discussion list.

70

http://six.pairlist.net/pipermail/markdown-discuss/2005-March/001097.html

Extension: multiline_tables

Multiline tables allow header and table rows to span multiple lines of text (but
cells that span multiple columns or rows of the table are not supported). Here
is an example:

Centered Default Right Left
Header Aligned Aligned Aligned

----------- ------- --------------- -------------------------
First row 12.0 Example of a row that

spans multiple lines.

Second row 5.0 Here's another one. Note
the blank line between
rows.

Table: Here's the caption. It, too, may span
multiple lines.

These work like simple tables, but with the following differences:

• They must begin with a row of dashes, before the header text (unless the
header row is omitted).

• They must end with a row of dashes, then a blank line.
• The rows must be separated by blank lines.

In multiline tables, the table parser pays attention to the widths of the columns,
and the writers try to reproduce these relative widths in the output. So, if you
find that one of the columns is too narrow in the output, try widening it in the
Markdown source.

The header may be omitted in multiline tables as well as simple tables:

----------- ------- --------------- -------------------------
First row 12.0 Example of a row that

spans multiple lines.

Second row 5.0 Here's another one. Note
the blank line between
rows.

----------- ------- --------------- -------------------------

: Here's a multiline table without a header.

It is possible for a multiline table to have just one row, but the row should be
followed by a blank line (and then the row of dashes that ends the table), or
the table may be interpreted as a simple table.

71

Extension: grid_tables

Grid tables look like this:

: Sample grid table.

+---------------+---------------+--------------------+
| Fruit | Price | Advantages |
+===============+===============+====================+
| Bananas | $1.34 | - built-in wrapper |
| | | - bright color |
+---------------+---------------+--------------------+
| Oranges | $2.10 | - cures scurvy |
| | | - tasty |
+---------------+---------------+--------------------+

The row of =s separates the header from the table body, and can be omitted for
a headerless table. The cells of grid tables may contain arbitrary block elements
(multiple paragraphs, code blocks, lists, etc.).

Cells can span multiple columns or rows:

+---------------------+----------+
| Property | Earth |
+=============+=======+==========+
| | min | -89.2 °C |
| Temperature +-------+----------+
| 1961-1990 | mean | 14 °C |
| +-------+----------+
| | max | 56.7 °C |
+-------------+-------+----------+

A table header may contain more than one row:

+---------------------+-----------------------+
| Location | Temperature 1961-1990 |
| | in degree Celsius |
| +-------+-------+-------+
| | min | mean | max |
+=====================+=======+=======+=======+
| Antarctica | -89.2 | N/A | 19.8 |
+---------------------+-------+-------+-------+
| Earth | -89.2 | 14 | 56.7 |
+---------------------+-------+-------+-------+

Alignments can be specified as with pipe tables, by putting colons at the bound-
aries of the separator line after the header:

+---------------+---------------+--------------------+
| Right | Left | Centered |

72

+==============:+:==============+:==================:+
| Bananas | $1.34 | built-in wrapper |
+---------------+---------------+--------------------+

For headerless tables, the colons go on the top line instead:

+--------------:+:--------------+:------------------:+
| Right | Left | Centered |
+---------------+---------------+--------------------+

A table foot can be defined by enclosing it with separator lines that use = instead
of -:

+---------------+---------------+
| Fruit | Price |
+===============+===============+
| Bananas | $1.34 |
+---------------+---------------+
| Oranges | $2.10 |
+===============+===============+
| Sum | $3.44 |
+===============+===============+

The foot must always be placed at the very bottom of the table.

Grid tables can be created easily using Emacs’ table-mode (M-x table-insert).

Extension: pipe_tables

Pipe tables look like this:

Right	Left	Default	Center
12	12	12	12
123	123	123	123
1	1	1	1

: Demonstration of pipe table syntax.

The syntax is identical to PHP Markdown Extra tables. The beginning and
ending pipe characters are optional, but pipes are required between all columns.
The colons indicate column alignment as shown. The header cannot be omitted.
To simulate a headerless table, include a header with blank cells.

Since the pipes indicate column boundaries, columns need not be vertically
aligned, as they are in the above example. So, this is a perfectly legal (though
ugly) pipe table:

fruit	price
apple|2.05

73

https://michelf.ca/projects/php-markdown/extra/#table

pear|1.37
orange|3.09

The cells of pipe tables cannot contain block elements like paragraphs and lists,
and cannot span multiple lines. If any line of the Markdown source is longer
than the column width (see --columns), then the table will take up the full text
width and the cell contents will wrap, with the relative cell widths determined
by the number of dashes in the line separating the table header from the table
body. (For example ---|- would make the first column 3/4 and the second
column 1/4 of the full text width.) On the other hand, if no lines are wider
than column width, then cell contents will not be wrapped, and the cells will
be sized to their contents.

Note: pandoc also recognizes pipe tables of the following form, as can be pro-
duced by Emacs’ orgtbl-mode:

| One | Two |
|-----+-------|
| my | table |
| is | nice |

The difference is that + is used instead of |. Other orgtbl features are not
supported. In particular, to get non-default column alignment, you’ll need to
add colons as above.

Metadata blocks
Extension: pandoc_title_block

If the file begins with a title block

% title
% author(s) (separated by semicolons)
% date

it will be parsed as bibliographic information, not regular text. (It will be used,
for example, in the title of standalone LaTeX or HTML output.) The block may
contain just a title, a date and an author, or all three elements. If you want to
include an author but no title, or a title and a date but no author, you need a
blank line:

%
% Author

% My title
%
% June 15, 2006

The title may occupy multiple lines, but continuation lines must begin with
leading space, thus:

74

% My title
on multiple lines

If a document has multiple authors, the authors may be put on separate lines
with leading space, or separated by semicolons, or both. So, all of the following
are equivalent:

% Author One
Author Two

% Author One; Author Two

% Author One;
Author Two

The date must fit on one line.

All three metadata fields may contain standard inline formatting (italics, links,
footnotes, etc.).

Title blocks will always be parsed, but they will affect the output only when the
--standalone (-s) option is chosen. In HTML output, titles will appear twice:
once in the document head—this is the title that will appear at the top of the
window in a browser—and once at the beginning of the document body. The title
in the document head can have an optional prefix attached (--title-prefix
or -T option). The title in the body appears as an H1 element with class “title”,
so it can be suppressed or reformatted with CSS. If a title prefix is specified
with -T and no title block appears in the document, the title prefix will be used
by itself as the HTML title.

The man page writer extracts a title, man page section number, and other
header and footer information from the title line. The title is assumed to be
the first word on the title line, which may optionally end with a (single-digit)
section number in parentheses. (There should be no space between the title and
the parentheses.) Anything after this is assumed to be additional footer and
header text. A single pipe character (|) should be used to separate the footer
text from the header text. Thus,

% PANDOC(1)

will yield a man page with the title PANDOC and section 1.

% PANDOC(1) Pandoc User Manuals

will also have “Pandoc User Manuals” in the footer.

% PANDOC(1) Pandoc User Manuals | Version 4.0

will also have “Version 4.0” in the header.

75

Extension: yaml_metadata_block

A YAML metadata block is a valid YAML object, delimited by a line of three
hyphens (---) at the top and a line of three hyphens (---) or three dots (...)
at the bottom. The initial line --- must not be followed by a blank line. A
YAML metadata block may occur anywhere in the document, but if it is not at
the beginning, it must be preceded by a blank line.

Note that, because of the way pandoc concatenates input files when several are
provided, you may also keep the metadata in a separate YAML file and pass it
to pandoc as an argument, along with your Markdown files:

pandoc chap1.md chap2.md chap3.md metadata.yaml -s -o book.html

Just be sure that the YAML file begins with --- and ends with --- or
Alternatively, you can use the --metadata-file option. Using that approach
however, you cannot reference content (like footnotes) from the main Markdown
input document.

Metadata will be taken from the fields of the YAML object and added to any
existing document metadata. Metadata can contain lists and objects (nested
arbitrarily), but all string scalars will be interpreted as Markdown. Fields with
names ending in an underscore will be ignored by pandoc. (They may be given
a role by external processors.) Field names must not be interpretable as YAML
numbers or boolean values (so, for example, yes, True, and 15 cannot be used
as field names).

A document may contain multiple metadata blocks. If two metadata blocks
attempt to set the same field, the value from the second block will be taken.

Each metadata block is handled internally as an independent YAML document.
This means, for example, that any YAML anchors defined in a block cannot be
referenced in another block.

When pandoc is used with -t markdown to create a Markdown document, a
YAML metadata block will be produced only if the -s/--standalone option is
used. All of the metadata will appear in a single block at the beginning of the
document.

Note that YAML escaping rules must be followed. Thus, for example, if a
title contains a colon, it must be quoted, and if it contains a backslash escape,
then it must be ensured that it is not treated as a YAML escape sequence.
The pipe character (|) can be used to begin an indented block that will be
interpreted literally, without need for escaping. This form is necessary when
the field contains blank lines or block-level formatting:

title: 'This is the title: it contains a colon'
author:
- Author One

76

https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html#id2776092

- Author Two
keywords: [nothing, nothingness]
abstract: |
This is the abstract.

It consists of two paragraphs.
...

The literal block after the | must be indented relative to the line containing
the |. If it is not, the YAML will be invalid and pandoc will not interpret it
as metadata. For an overview of the complex rules governing YAML, see the
Wikipedia entry on YAML syntax.

Template variables will be set automatically from the metadata. Thus, for
example, in writing HTML, the variable abstract will be set to the HTML
equivalent of the Markdown in the abstract field:

<p>This is the abstract.</p>
<p>It consists of two paragraphs.</p>

Variables can contain arbitrary YAML structures, but the template must match
this structure. The author variable in the default templates expects a simple
list or string, but can be changed to support more complicated structures. The
following combination, for example, would add an affiliation to the author if one
is given:

title: The document title
author:
- name: Author One
affiliation: University of Somewhere

- name: Author Two
affiliation: University of Nowhere

...

To use the structured authors in the example above, you would need a custom
template:

$for(author)$
$if(author.name)$
$author.name$$if(author.affiliation)$ ($author.affiliation$)$endif$
$else$
$author$
$endif$
$endfor$

Raw content to include in the document’s header may be specified using
header-includes; however, it is important to mark up this content as raw
code for a particular output format, using the raw_attribute extension, or it
will be interpreted as Markdown. For example:

77

https://en.wikipedia.org/wiki/YAML#Syntax

header-includes:
- |
```{=latex}
\let\oldsection\section
\renewcommand{\section}[1]{\clearpage\oldsection{#1}}
```

Note: the yaml_metadata_block extension works with commonmark as well as
markdown (and it is enabled by default in gfm and commonmark_x). However, in
these formats the following restrictions apply:

• The YAML metadata block must occur at the beginning of the document
(and there can be only one). If multiple files are given as arguments to
pandoc, only the first can be a YAML metadata block.

• The leaf nodes of the YAML structure are parsed in isolation from each
other and from the rest of the document. So, for example, you can’t use a
reference link in these contexts if the link definition is somewhere else in
the document.

Backslash escapes
Extension: all_symbols_escapable

Except inside a code block or inline code, any punctuation or space charac-
ter preceded by a backslash will be treated literally, even if it would normally
indicate formatting. Thus, for example, if one writes

hello

one will get

hello

instead of

hello

This rule is easier to remember than original Markdown’s rule, which allows
only the following characters to be backslash-escaped:

\`*_{}[]()>#+-.!

(However, if the markdown_strict format is used, the original Markdown rule
will be used.)

A backslash-escaped space is parsed as a nonbreaking space. In TeX output, it
will appear as ~. In HTML and XML output, it will appear as a literal unicode
nonbreaking space character (note that it will thus actually look “invisible” in
the generated HTML source; you can still use the --ascii command-line option
to make it appear as an explicit entity).

78

A backslash-escaped newline (i.e. a backslash occurring at the end of a line) is
parsed as a hard line break. It will appear in TeX output as \\ and in HTML as

. This is a nice alternative to Markdown’s “invisible” way of indicating
hard line breaks using two trailing spaces on a line.

Backslash escapes do not work in verbatim contexts.

Inline formatting
Emphasis

To emphasize some text, surround it with *s or _, like this:

This text is _emphasized with underscores_, and this
is *emphasized with asterisks*.

Double * or _ produces strong emphasis:

This is **strong emphasis** and __with underscores__.

A * or _ character surrounded by spaces, or backslash-escaped, will not trigger
emphasis:

This is * not emphasized *, and *neither is this*.

Extension: intraword_underscores

Because _ is sometimes used inside words and identifiers, pandoc does not in-
terpret a _ surrounded by alphanumeric characters as an emphasis marker. If
you want to emphasize just part of a word, use *:

feas*ible*, not feas*able*.

Strikeout

Extension: strikeout

To strike out a section of text with a horizontal line, begin and end it with ~~.
Thus, for example,

This ~~is deleted text.~~

Superscripts and subscripts

Extension: superscript, subscript

Superscripts may be written by surrounding the superscripted text by ^ char-
acters; subscripts may be written by surrounding the subscripted text by ~
characters. Thus, for example,

H~2~O is a liquid. 2^10^ is 1024.

79

The text between ^...^ or ~...~ may not contain spaces or newlines. If the
superscripted or subscripted text contains spaces, these spaces must be escaped
with backslashes. (This is to prevent accidental superscripting and subscripting
through the ordinary use of ~ and ^, and also bad interactions with footnotes.)
Thus, if you want the letter P with ‘a cat’ in subscripts, use P~a\ cat~, not
P~a cat~.

Verbatim

To make a short span of text verbatim, put it inside backticks:

What is the difference between `>>=` and `>>`?

If the verbatim text includes a backtick, use double backticks:

Here is a literal backtick `` ` ``.

(The spaces after the opening backticks and before the closing backticks will be
ignored.)

The general rule is that a verbatim span starts with a string of consecutive
backticks (optionally followed by a space) and ends with a string of the same
number of backticks (optionally preceded by a space).

Note that backslash-escapes (and other Markdown constructs) do not work in
verbatim contexts:

This is a backslash followed by an asterisk: `*`.

Extension: inline_code_attributes

Attributes can be attached to verbatim text, just as with fenced code blocks:

`<$>`{.haskell}

Underline

To underline text, use the underline class:

[Underline]{.underline}

Or, without the bracketed_spans extension (but with native_spans):

Underline

This will work in all output formats that support underline.

Small caps

To write small caps, use the smallcaps class:

[Small caps]{.smallcaps}

Or, without the bracketed_spans extension:

80

Small caps

For compatibility with other Markdown flavors, CSS is also supported:

Small caps

This will work in all output formats that support small caps.

Highlighting

To highlight text, use the mark class:

[Mark]{.mark}

Or, without the bracketed_spans extension (but with native_spans):

Mark

This will work in all output formats that support highlighting.

Math
Extension: tex_math_dollars

Anything between two $ characters will be treated as TeX math. The opening
$ must have a non-space character immediately to its right, while the clos-
ing $ must have a non-space character immediately to its left, and must not
be followed immediately by a digit. Thus, $20,000 and $30,000 won’t parse
as math. If for some reason you need to enclose text in literal $ characters,
backslash-escape them and they won’t be treated as math delimiters.

For display math, use $$ delimiters. (In this case, the delimiters may be sep-
arated from the formula by whitespace. However, there can be no blank lines
between the opening and closing $$ delimiters.)

TeX math will be printed in all output formats. How it is rendered depends on
the output format:

LaTeX It will appear verbatim surrounded by \(...\) (for inline math) or
\[...\] (for display math).

Markdown, Emacs Org mode, ConTeXt, ZimWiki It will appear verba-
tim surrounded by $...$ (for inline math) or $$...$$ (for display math).

XWiki It will appear verbatim surrounded by {{formula}}..{{/formula}}.
reStructuredText It will be rendered using an interpreted text role :math:.
AsciiDoc For AsciiDoc output math will appear verbatim surrounded by

latexmath:[...]. For asciidoc_legacy the bracketed material will
also include inline or display math delimiters.

Texinfo It will be rendered inside a @math command.
roff man, Jira markup It will be rendered verbatim without $’s.
MediaWiki, DokuWiki It will be rendered inside <math> tags.
Textile It will be rendered inside tags.

81

https://docutils.sourceforge.io/docs/ref/rst/roles.html#math

RTF, OpenDocument It will be rendered, if possible, using Unicode charac-
ters, and will otherwise appear verbatim.

ODT It will be rendered, if possible, using MathML.
DocBook If the --mathml flag is used, it will be rendered using MathML in an

inlineequation or informalequation tag. Otherwise it will be rendered,
if possible, using Unicode characters.

Docx and PowerPoint It will be rendered using OMML math markup.
FictionBook2 If the --webtex option is used, formulas are rendered as im-

ages using CodeCogs or other compatible web service, downloaded and
embedded in the e-book. Otherwise, they will appear verbatim.

HTML, Slidy, DZSlides, S5, EPUB The way math is rendered in HTML
will depend on the command-line options selected. Therefore see Math
rendering in HTML above.

Raw HTML
Extension: raw_html

Markdown allows you to insert raw HTML (or DocBook) anywhere in a doc-
ument (except verbatim contexts, where <, >, and & are interpreted literally).
(Technically this is not an extension, since standard Markdown allows it, but it
has been made an extension so that it can be disabled if desired.)

The raw HTML is passed through unchanged in HTML, S5, Slidy, Slideous,
DZSlides, EPUB, Markdown, CommonMark, Emacs Org mode, and Textile
output, and suppressed in other formats.

For a more explicit way of including raw HTML in a Markdown document, see
the raw_attribute extension.

In the CommonMark format, if raw_html is enabled, superscripts, subscripts,
strikeouts and small capitals will be represented as HTML. Otherwise, plain-
text fallbacks will be used. Note that even if raw_html is disabled, tables will
be rendered with HTML syntax if they cannot use pipe syntax.

Extension: markdown_in_html_blocks

Original Markdown allows you to include HTML “blocks”: blocks of HTML
between balanced tags that are separated from the surrounding text with blank
lines, and start and end at the left margin. Within these blocks, everything
is interpreted as HTML, not Markdown; so (for example), * does not signify
emphasis.

Pandoc behaves this way when the markdown_strict format is used; but by
default, pandoc interprets material between HTML block tags as Markdown.
Thus, for example, pandoc will turn

<table>
<tr>

82

<td>*one*</td>
<td>[a link](https://google.com)</td>
</tr>
</table>

into

<table>
<tr>
<td>one</td>
<td>a link</td>
</tr>
</table>

whereas Markdown.pl will preserve it as is.

There is one exception to this rule: text between <script>, <style>, <pre>,
and <textarea> tags is not interpreted as Markdown.

This departure from original Markdown should make it easier to mix Mark-
down with HTML block elements. For example, one can surround a block of
Markdown text with <div> tags without preventing it from being interpreted
as Markdown.

Extension: native_divs

Use native pandoc Div blocks for content inside <div> tags. For the most part
this should give the same output as markdown_in_html_blocks, but it makes
it easier to write pandoc filters to manipulate groups of blocks.

Extension: native_spans

Use native pandoc Span blocks for content inside tags. For the most
part this should give the same output as raw_html, but it makes it easier to
write pandoc filters to manipulate groups of inlines.

Extension: raw_tex

In addition to raw HTML, pandoc allows raw LaTeX, TeX, and ConTeXt to
be included in a document. Inline TeX commands will be preserved and passed
unchanged to the LaTeX and ConTeXt writers. Thus, for example, you can use
LaTeX to include BibTeX citations:

This result was proved in \cite{jones.1967}.

Note that in LaTeX environments, like

\begin{tabular}{|l|l|}\hline
Age & Frequency \\ \hline
18--25 & 15 \\

83

26--35 & 33 \\
36--45 & 22 \\ \hline
\end{tabular}

the material between the begin and end tags will be interpreted as raw LaTeX,
not as Markdown.

For a more explicit and flexible way of including raw TeX in a Markdown doc-
ument, see the raw_attribute extension.

Inline LaTeX is ignored in output formats other than Markdown, LaTeX, Emacs
Org mode, and ConTeXt.

Generic raw attribute

Extension: raw_attribute

Inline spans and fenced code blocks with a special kind of attribute will be
parsed as raw content with the designated format. For example, the following
produces a raw roff ms block:

```{=ms}
.MYMACRO
blah blah
```

And the following produces a raw html inline element:

This is `<a>html`{=html}

This can be useful to insert raw xml into docx documents, e.g. a pagebreak:

```{=openxml}
<w:p>
<w:r>
<w:br w:type="page"/>

</w:r>
</w:p>
```

The format name should match the target format name (see -t/--to, above, for
a list, or use pandoc --list-output-formats). Use openxml for docx output,
opendocument for odt output, html5 for epub3 output, html4 for epub2 output,
and latex, beamer, ms, or html5 for pdf output (depending on what you use
for --pdf-engine).

This extension presupposes that the relevant kind of inline code or fenced code
block is enabled. Thus, for example, to use a raw attribute with a backtick code
block, backtick_code_blocks must be enabled.

The raw attribute cannot be combined with regular attributes.

84

LaTeX macros
Extension: latex_macros

When this extension is enabled, pandoc will parse LaTeX macro definitions and
apply the resulting macros to all LaTeX math and raw LaTeX. So, for example,
the following will work in all output formats, not just LaTeX:

\newcommand{\tuple}[1]{\langle #1 \rangle}

$\tuple{a, b, c}$

Note that LaTeX macros will not be applied if they occur inside a raw span or
block marked with the raw_attribute extension.

When latex_macros is disabled, the raw LaTeX and math will not have macros
applied. This is usually a better approach when you are targeting LaTeX or
PDF.

Macro definitions in LaTeX will be passed through as raw LaTeX only if
latex_macros is not enabled. Macro definitions in Markdown source (or
other formats allowing raw_tex) will be passed through regardless of whether
latex_macros is enabled.

Links
Markdown allows links to be specified in several ways.

Automatic links

If you enclose a URL or email address in pointy brackets, it will become a link:

<https://google.com>
<sam@green.eggs.ham>

Inline links

An inline link consists of the link text in square brackets, followed by the URL
in parentheses. (Optionally, the URL can be followed by a link title, in quotes.)

This is an [inline link](/url), and here's [one with
a title](https://fsf.org "click here for a good time!").

There can be no space between the bracketed part and the parenthesized part.
The link text can contain formatting (such as emphasis), but the title cannot.

Email addresses in inline links are not autodetected, so they have to be prefixed
with mailto:

[Write me!](mailto:sam@green.eggs.ham)

85

Reference links

An explicit reference link has two parts, the link itself and the link definition,
which may occur elsewhere in the document (either before or after the link).

The link consists of link text in square brackets, followed by a label in
square brackets. (There cannot be space between the two unless the
spaced_reference_links extension is enabled.) The link definition consists of
the bracketed label, followed by a colon and a space, followed by the URL, and
optionally (after a space) a link title either in quotes or in parentheses. The
label must not be parseable as a citation (assuming the citations extension
is enabled): citations take precedence over link labels.

Here are some examples:

[my label 1]: /foo/bar.html "My title, optional"
[my label 2]: /foo
[my label 3]: https://fsf.org (The Free Software Foundation)
[my label 4]: /bar#special 'A title in single quotes'

The URL may optionally be surrounded by angle brackets:

[my label 5]: <http://foo.bar.baz>

The title may go on the next line:

[my label 3]: https://fsf.org
"The Free Software Foundation"

Note that link labels are not case sensitive. So, this will work:

Here is [my link][FOO]

[Foo]: /bar/baz

In an implicit reference link, the second pair of brackets is empty:

See [my website][].

[my website]: http://foo.bar.baz

Note: In Markdown.pl and most other Markdown implementations, reference
link definitions cannot occur in nested constructions such as list items or block
quotes. Pandoc lifts this arbitrary-seeming restriction. So the following is fine
in pandoc, though not in most other implementations:

> My block [quote].
>
> [quote]: /foo

Extension: shortcut_reference_links

In a shortcut reference link, the second pair of brackets may be omitted entirely:

86

See [my website].

[my website]: http://foo.bar.baz

Internal links

To link to another section of the same document, use the automatically gener-
ated identifier (see Heading identifiers). For example:

See the [Introduction](#introduction).

or

See the [Introduction].

[Introduction]: #introduction

Internal links are currently supported for HTML formats (including HTML slide
shows and EPUB), LaTeX, and ConTeXt.

Images
A link immediately preceded by a ! will be treated as an image. The link text
will be used as the image’s alt text:

![la lune](lalune.jpg "Voyage to the moon")

![movie reel]

[movie reel]: movie.gif

Extension: implicit_figures

An image with nonempty alt text, occurring by itself in a paragraph, will be
rendered as a figure with a caption. The image’s alt text will be used as the
caption.

![This is the caption](/url/of/image.png)

How this is rendered depends on the output format. Some output formats
(e.g. RTF) do not yet support figures. In those formats, you’ll just get an image
in a paragraph by itself, with no caption.

If you just want a regular inline image, just make sure it is not the only thing
in the paragraph. One way to do this is to insert a nonbreaking space after the
image:

![This image won't be a figure](/url/of/image.png)\

87

Note that in reveal.js slide shows, an image in a paragraph by itself that has
the r-stretch class will fill the screen, and the caption and figure tags will be
omitted.

Extension: link_attributes

Attributes can be set on links and images:

An inline ![image](foo.jpg){#id .class width=30 height=20px}
and a reference ![image][ref] with attributes.

[ref]: foo.jpg "optional title" {#id .class key=val key2="val 2"}

(This syntax is compatible with PHP Markdown Extra when only #id and
.class are used.)

For HTML and EPUB, all known HTML5 attributes except width and height
(but including srcset and sizes) are passed through as is. Unknown attributes
are passed through as custom attributes, with data- prepended. The other
writers ignore attributes that are not specifically supported by their output
format.

The width and height attributes on images are treated specially. When used
without a unit, the unit is assumed to be pixels. However, any of the following
unit identifiers can be used: px, cm, mm, in, inch and %. There must not be any
spaces between the number and the unit. For example:

{ width=50% }

• Dimensions may be converted to a form that is compatible with the out-
put format (for example, dimensions given in pixels will be converted to
inches when converting HTML to LaTeX). Conversion between pixels and
physical measurements is affected by the --dpi option (by default, 96 dpi
is assumed, unless the image itself contains dpi information).

• The % unit is generally relative to some available space. For example the
above example will render to the following.

– HTML:
– LaTeX: \includegraphics[width=0.5\textwidth,height=\textheight]{file.jpg}
(If you’re using a custom template, you need to configure graphicx
as in the default template.)

– ConTeXt: \externalfigure[file.jpg][width=0.5\textwidth]
• Some output formats have a notion of a class (ConTeXt) or a unique

identifier (LaTeX \caption), or both (HTML).
• When no width or height attributes are specified, the fallback is to look

at the image resolution and the dpi metadata embedded in the image file.

88

https://michelf.ca/projects/php-markdown/extra/
https://wiki.contextgarden.net/Using_Graphics#Multiple_Image_Settings

Divs and Spans
Using the native_divs and native_spans extensions (see above), HTML syn-
tax can be used as part of Markdown to create native Div and Span elements
in the pandoc AST (as opposed to raw HTML). However, there is also nicer
syntax available:

Extension: fenced_divs

Allow special fenced syntax for native Div blocks. A Div starts with a fence
containing at least three consecutive colons plus some attributes. The attributes
may optionally be followed by another string of consecutive colons.

Note: the commonmark parser doesn’t permit colons after the attributes.

The attribute syntax is exactly as in fenced code blocks (see Extension:
fenced_code_attributes). As with fenced code blocks, one can use either
attributes in curly braces or a single unbraced word, which will be treated as
a class name. The Div ends with another line containing a string of at least
three consecutive colons. The fenced Div should be separated by blank lines
from preceding and following blocks.

Example:

::::: {#special .sidebar}
Here is a paragraph.

And another.
:::::

Fenced divs can be nested. Opening fences are distinguished because they must
have attributes:

::: Warning ::::::
This is a warning.

::: Danger
This is a warning within a warning.
:::
::::::::::::::::::

Fences without attributes are always closing fences. Unlike with fenced code
blocks, the number of colons in the closing fence need not match the number in
the opening fence. However, it can be helpful for visual clarity to use fences of
different lengths to distinguish nested divs from their parents.

Extension: bracketed_spans

A bracketed sequence of inlines, as one would use to begin a link, will be treated
as a Span with attributes if it is followed immediately by attributes:

89

[This is *some text*]{.class key="val"}

Footnotes
Extension: footnotes

Pandoc’s Markdown allows footnotes, using the following syntax:

Here is a footnote reference,[^1] and another.[^longnote]

[^1]: Here is the footnote.

[^longnote]: Here's one with multiple blocks.

Subsequent paragraphs are indented to show that they
belong to the previous footnote.

{ some.code }

The whole paragraph can be indented, or just the first
line. In this way, multi-paragraph footnotes work like
multi-paragraph list items.

This paragraph won't be part of the note, because it
isn't indented.

The identifiers in footnote references may not contain spaces, tabs, newlines,
or the characters ^, [, or]. These identifiers are used only to correlate the
footnote reference with the note itself; in the output, footnotes will be numbered
sequentially.

The footnotes themselves need not be placed at the end of the document. They
may appear anywhere except inside other block elements (lists, block quotes,
tables, etc.). Each footnote should be separated from surrounding content (in-
cluding other footnotes) by blank lines.

Extension: inline_notes

Inline footnotes are also allowed (though, unlike regular notes, they cannot
contain multiple paragraphs). The syntax is as follows:

Here is an inline note.^[Inline notes are easier to write, since
you don't have to pick an identifier and move down to type the
note.]

Inline and regular footnotes may be mixed freely.

90

Citation syntax
Extension: citations

To cite a bibliographic item with an identifier foo, use the syntax @foo. Nor-
mal citations should be included in square brackets, with semicolons separating
distinct items:

Blah blah [@doe99; @smith2000; @smith2004].

How this is rendered depends on the citation style. In an author-date style, it
might render as

Blah blah (Doe 1999, Smith 2000, 2004).

In a footnote style, it might render as

Blah blah.[^1]

[^1]: John Doe, "Frogs," *Journal of Amphibians* 44 (1999);
Susan Smith, "Flies," *Journal of Insects* (2000);
Susan Smith, "Bees," *Journal of Insects* (2004).

See the CSL user documentation for more information about CSL styles and
how they affect rendering.

Unless a citation key starts with a letter, digit, or _, and contains only al-
phanumerics and single internal punctuation characters (:.#$%&-+?<>~/), it
must be surrounded by curly braces, which are not considered part of the
key. In @Foo_bar.baz., the key is Foo_bar.baz because the final period is
not internal punctuation, so it is not included in the key. In @{Foo_bar.baz.},
the key is Foo_bar.baz., including the final period. In @Foo_bar--baz, the
key is Foo_bar because the repeated internal punctuation characters termi-
nate the key. The curly braces are recommended if you use URLs as keys:
[@{https://example.com/bib?name=foobar&date=2000}, p. 33].

Citation items may optionally include a prefix, a locator, and a suffix. In

Blah blah [see @doe99, pp. 33-35 and *passim*; @smith04, chap. 1].

the first item (doe99) has prefix see, locator pp. 33-35, and suffix and
passim. The second item (smith04) has locator chap. 1 and no prefix or
suffix.

Pandoc uses some heuristics to separate the locator from the rest of the subject.
It is sensitive to the locator terms defined in the CSL locale files. Either abbre-
viated or unabbreviated forms are accepted. In the en-US locale, locator terms
can be written in either singular or plural forms, as book, bk./bks.; chapter,
chap./chaps.; column, col./cols.; figure, fig./figs.; folio, fol./fols.;
number, no./nos.; line, l./ll.; note, n./nn.; opus, op./opp.; page, p./pp.;
paragraph, para./paras.; part, pt./pts.; section, sec./secs.; sub verbo,

91

https://citationstyles.org/authors/
https://github.com/citation-style-language/locales

s.v./s.vv.; verse, v./vv.; volume, vol./vols.; ¶/¶¶; §/§§. If no locator
term is used, “page” is assumed.

In complex cases, you can force something to be treated as a locator by enclosing
it in curly braces or prevent parsing the suffix as locator by prepending curly
braces:

[@smith{ii, A, D-Z}, with a suffix]
[@smith, {pp. iv, vi-xi, (xv)-(xvii)} with suffix here]
[@smith{}, 99 years later]

A minus sign (-) before the @ will suppress mention of the author in the citation.
This can be useful when the author is already mentioned in the text:

Smith says blah [-@smith04].

You can also write an author-in-text citation, by omitting the square brackets:

@smith04 says blah.

@smith04 [p. 33] says blah.

This will cause the author’s name to be rendered, followed by the bibliographical
details. Use this form when you want to make the citation the subject of a
sentence.

When you are using a note style, it is usually better to let citeproc create the
footnotes from citations rather than writing an explicit note. If you do write
an explicit note that contains a citation, note that normal citations will be put
in parentheses, while author-in-text citations will not. For this reason, it is
sometimes preferable to use the author-in-text style inside notes when using a
note style.

Non-default extensions
The following Markdown syntax extensions are not enabled by default
in pandoc, but may be enabled by adding +EXTENSION to the format
name, where EXTENSION is the name of the extension. Thus, for example,
markdown+hard_line_breaks is Markdown with hard line breaks.

Extension: rebase_relative_paths

Rewrite relative paths for Markdown links and images, depending on the path
of the file containing the link or image link. For each link or image, pandoc will
compute the directory of the containing file, relative to the working directory,
and prepend the resulting path to the link or image path.

The use of this extension is best understood by example. Suppose you have a
subdirectory for each chapter of a book, chap1, chap2, chap3. Each contains
a file text.md and a number of images used in the chapter. You would like

92

to have ![image](spider.jpg) in chap1/text.md refer to chap1/spider.jpg
and ![image](spider.jpg) in chap2/text.md refer to chap2/spider.jpg. To
do this, use

pandoc chap*/*.md -f markdown+rebase_relative_paths

Without this extension, you would have to use ![image](chap1/spider.jpg)
in chap1/text.md and ![image](chap2/spider.jpg) in chap2/text.md.
Links with relative paths will be rewritten in the same way as images.

Absolute paths and URLs are not changed. Neither are empty paths or paths
consisting entirely of a fragment, e.g., #foo.

Note that relative paths in reference links and images will be rewritten relative
to the file containing the link reference definition, not the file containing the
reference link or image itself, if these differ.

Extension: mark

To highlight out a section of text, begin and end it with with ==. Thus, for
example,

This ==is deleted text.==

Extension: attributes

Allows attributes to be attached to any inline or block-level element when pars-
ing commonmark. The syntax for the attributes is the same as that used in
header_attributes.

• Attributes that occur immediately after an inline element affect that ele-
ment. If they follow a space, then they belong to the space. (Hence, this
option subsumes inline_code_attributes and link_attributes.)

• Attributes that occur immediately before a block element, on a line by
themselves, affect that element.

• Consecutive attribute specifiers may be used, either for blocks or for inlines.
Their attributes will be combined.

• Attributes that occur at the end of the text of a Setext or ATX head-
ing (separated by whitespace from the text) affect the heading element.
(Hence, this option subsumes header_attributes.)

• Attributes that occur after the opening fence in a fenced code
block affect the code block element. (Hence, this option subsumes
fenced_code_attributes.)

• Attributes that occur at the end of a reference link definition affect links
that refer to that definition.

Note that pandoc’s AST does not currently allow attributes to be attached to
arbitrary elements. Hence a Span or Div container will be added if needed.

93

Extension: old_dashes

Selects the pandoc <= 1.8.2.1 behavior for parsing smart dashes: - before a
numeral is an en-dash, and -- is an em-dash. This option only has an effect if
smart is enabled. It is selected automatically for textile input.

Extension: angle_brackets_escapable

Allow < and > to be backslash-escaped, as they can be in GitHub flavored
Markdown but not original Markdown. This is implied by pandoc’s default
all_symbols_escapable.

Extension: lists_without_preceding_blankline

Allow a list to occur right after a paragraph, with no intervening blank space.

Extension: four_space_rule

Selects the pandoc <= 2.0 behavior for parsing lists, so that four spaces indent
are needed for list item continuation paragraphs.

Extension: spaced_reference_links

Allow whitespace between the two components of a reference link, for example,

[foo] [bar].

Extension: hard_line_breaks

Causes all newlines within a paragraph to be interpreted as hard line breaks
instead of spaces.

Extension: ignore_line_breaks

Causes newlines within a paragraph to be ignored, rather than being treated as
spaces or as hard line breaks. This option is intended for use with East Asian
languages where spaces are not used between words, but text is divided into
lines for readability.

Extension: east_asian_line_breaks

Causes newlines within a paragraph to be ignored, rather than being treated as
spaces or as hard line breaks, when they occur between two East Asian wide
characters. This is a better choice than ignore_line_breaks for texts that
include a mix of East Asian wide characters and other characters.

Extension: emoji

Parses textual emojis like :smile: as Unicode emoticons.

94

Extension: tex_math_gfm

Supports two GitHub-specific formats for math. Inline math: $`e=mc^2`$.

Display math:

``` math
e=mc^2
```

Extension: tex_math_single_backslash

Causes anything between \(and \) to be interpreted as inline TeX math, and
anything between \[and \] to be interpreted as display TeX math. Note: a
drawback of this extension is that it precludes escaping (and [.

Extension: tex_math_double_backslash

Causes anything between \\(and \\) to be interpreted as inline TeX math,
and anything between \\[and \\] to be interpreted as display TeX math.

Extension: markdown_attribute

By default, pandoc interprets material inside block-level tags as Markdown.
This extension changes the behavior so that Markdown is only parsed inside
block-level tags if the tags have the attribute markdown=1.

Extension: mmd_title_block

Enables a MultiMarkdown style title block at the top of the document, for
example:

Title: My title
Author: John Doe
Date: September 1, 2008
Comment: This is a sample mmd title block, with

a field spanning multiple lines.

See the MultiMarkdown documentation for details. If pandoc_title_block or
yaml_metadata_block is enabled, it will take precedence over mmd_title_block.

Extension: abbreviations

Parses PHP Markdown Extra abbreviation keys, like

*[HTML]: Hypertext Markup Language

Note that the pandoc document model does not support abbreviations, so if
this extension is enabled, abbreviation keys are simply skipped (as opposed to
being parsed as paragraphs).

95

https://fletcherpenney.net/multimarkdown/

Extension: alerts

Supports GitHub-style Markdown alerts, like

> [!TIP]
> Helpful advice for doing things better or more easily.

Extension: autolink_bare_uris

Makes all absolute URIs into links, even when not surrounded by pointy braces
<...>.

Extension: mmd_link_attributes

Parses MultiMarkdown-style key-value attributes on link and image references.
This extension should not be confused with the link_attributes extension.

This is a reference ![image][ref] with MultiMarkdown attributes.

[ref]: https://path.to/image "Image title" width=20px height=30px
id=myId class="myClass1 myClass2"

Extension: mmd_header_identifiers

Parses MultiMarkdown-style heading identifiers (in square brackets, after the
heading but before any trailing #s in an ATX heading).

Extension: compact_definition_lists

Activates the definition list syntax of pandoc 1.12.x and earlier. This syntax
differs from the one described above under Definition lists in several respects:

• No blank line is required between consecutive items of the definition list.
• To get a “tight” or “compact” list, omit space between consecutive items;

the space between a term and its definition does not affect anything.
• Lazy wrapping of paragraphs is not allowed: the entire definition must be

indented four spaces.4

4To see why laziness is incompatible with relaxing the requirement of a blank line between
items, consider the following example:
bar
: definition
foo
: definition

Is this a single list item with two definitions of “bar,” the first of which is lazily wrapped,
or two list items? To remove the ambiguity we must either disallow lazy wrapping or require
a blank line between list items.

96

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax#alerts

Extension: gutenberg

Use Project Gutenberg conventions for plain output: all-caps for strong em-
phasis, surround by underscores for regular emphasis, add extra blank space
around headings.

Extension: sourcepos

Include source position attributes when parsing commonmark. For elements that
accept attributes, a data-pos attribute is added; other elements are placed in
a surrounding Div or Span element with a data-pos attribute.

Extension: short_subsuperscripts

Parse MultiMarkdown-style subscripts and superscripts, which start with a ‘~’
or ‘^’ character, respectively, and include the alphanumeric sequence that fol-
lows. For example:

x^2 = 4

or

Oxygen is O~2.

Extension: wikilinks_title_after_pipe

Pandoc supports multiple Markdown wikilink syntaxes, regardless of whether
the title is before or after the pipe.

Using --from=markdown+wikilinks_title_after_pipe results in

[[URL|title]]

while using --from=markdown+wikilinks_title_before_pipe results in

[[title|URL]]

Markdown variants
In addition to pandoc’s extended Markdown, the following Markdown variants
are supported:

• markdown_phpextra (PHP Markdown Extra)
• markdown_github (deprecated GitHub-Flavored Markdown)
• markdown_mmd (MultiMarkdown)
• markdown_strict (Markdown.pl)
• commonmark (CommonMark)
• gfm (Github-Flavored Markdown)
• commonmark_x (CommonMark with many pandoc extensions)

To see which extensions are supported for a given format, and which are enabled
by default, you can use the command

97

https://www.gutenberg.org

pandoc --list-extensions=FORMAT

where FORMAT is replaced with the name of the format.

Note that the list of extensions for commonmark, gfm, and commonmark_x are de-
fined relative to default commonmark. So, for example, backtick_code_blocks
does not appear as an extension, since it is enabled by default and cannot be
disabled.

Citations
When the --citeproc option is used, pandoc can automatically generate cita-
tions and a bibliography in a number of styles. Basic usage is

pandoc --citeproc myinput.txt

To use this feature, you will need to have

• a document containing citations (see Citation syntax);
• a source of bibliographic data: either an external bibliography file or a list

of references in the document’s YAML metadata;
• optionally, a CSL citation style.

Specifying bibliographic data
You can specify an external bibliography using the bibliography metadata
field in a YAML metadata section or the --bibliography command line argu-
ment. If you want to use multiple bibliography files, you can supply multiple
--bibliography arguments or set bibliography metadata field to YAML ar-
ray. A bibliography may have any of these formats:

Format File extension
BibLaTeX .bib
BibTeX .bibtex
CSL JSON .json
CSL YAML .yaml
RIS .ris

Note that .bib can be used with both BibTeX and BibLaTeX files; use the
extension .bibtex to force interpretation as BibTeX.

In BibTeX and BibLaTeX databases, pandoc parses LaTeX markup inside fields
such as title; in CSL YAML databases, pandoc Markdown; and in CSL JSON
databases, an HTML-like markup:

<i>...</i> italics
... bold

98

https://docs.citationstyles.org/en/stable/specification.html
https://citeproc-js.readthedocs.io/en/latest/csl-json/markup.html#html-like-formatting-tags

... or <sc>...</sc>
small capitals

_{...} subscript
^{...} superscript
... prevent a phrase from being capitalized

as title case

As an alternative to specifying a bibliography file using --bibliography or the
YAML metadata field bibliography, you can include the citation data directly
in the references field of the document’s YAML metadata. The field should
contain an array of YAML-encoded references, for example:

references:
- type: article-journal
id: WatsonCrick1953
author:
- family: Watson
given: J. D.

- family: Crick
given: F. H. C.

issued:
date-parts:
- - 1953
- 4
- 25

title: 'Molecular structure of nucleic acids: a structure for
deoxyribose nucleic acid'

title-short: Molecular structure of nucleic acids
container-title: Nature
volume: 171
issue: 4356
page: 737-738
DOI: 10.1038/171737a0
URL: https://www.nature.com/articles/171737a0
language: en-GB

...

If both an external bibliography and inline (YAML metadata) references are
provided, both will be used. In case of conflicting ids, the inline references will
take precedence.

Note that pandoc can be used to produce such a YAML metadata section from
a BibTeX, BibLaTeX, or CSL JSON bibliography:

pandoc chem.bib -s -f biblatex -t markdown
pandoc chem.json -s -f csljson -t markdown

Indeed, pandoc can convert between any of these citation formats:

99

pandoc chem.bib -s -f biblatex -t csljson
pandoc chem.yaml -s -f markdown -t biblatex

Running pandoc on a bibliography file with the --citeproc option will create
a formatted bibliography in the format of your choice:

pandoc chem.bib -s --citeproc -o chem.html
pandoc chem.bib -s --citeproc -o chem.pdf

Capitalization in titles

If you are using a bibtex or biblatex bibliography, then observe the following
rules:

• English titles should be in title case. Non-English titles should be in
sentence case, and the langid field in biblatex should be set to the rel-
evant language. (The following values are treated as English: american,
british, canadian, english, australian, newzealand, USenglish, or
UKenglish.)

• As is standard with bibtex/biblatex, proper names should be protected
with curly braces so that they won’t be lowercased in styles that call for
sentence case. For example:

title = {My Dinner with {Andre}}

• In addition, words that should remain lowercase (or camelCase) should be
protected:

title = {Spin Wave Dispersion on the {nm} Scale}

Though this is not necessary in bibtex/biblatex, it is necessary with
citeproc, which stores titles internally in sentence case, and converts to
title case in styles that require it. Here we protect “nm” so that it doesn’t
get converted to “Nm” at this stage.

If you are using a CSL bibliography (either JSON or YAML), then observe the
following rules:

• All titles should be in sentence case.

• Use the language field for non-English titles to prevent their conversion to
title case in styles that call for this. (Conversion happens only if language
begins with en or is left empty.)

• Protect words that should not be converted to title case using this syntax:

Spin wave dispersion on the nm scale

Conference Papers, Published vs. Unpublished

For a formally published conference paper, use the biblatex entry type
inproceedings (which will be mapped to CSL paper-conference).

100

For an unpublished manuscript, use the biblatex entry type unpublished with-
out an eventtitle field (this entry type will be mapped to CSL manuscript).

For a talk, an unpublished conference paper, or a poster presentation, use the
biblatex entry type unpublished with an eventtitle field (this entry type will
be mapped to CSL speech). Use the biblatex type field to indicate the type,
e.g. “Paper”, or “Poster”. venue and eventdate may be useful too, though
eventdate will not be rendered by most CSL styles. Note that venue is for the
event’s venue, unlike location which describes the publisher’s location; do not
use the latter for an unpublished conference paper.

Specifying a citation style
Citations and references can be formatted using any style supported by the
Citation Style Language, listed in the Zotero Style Repository. These files are
specified using the --csl option or the csl (or citation-style) metadata
field. By default, pandoc will use the Chicago Manual of Style author-date
format. (You can override this default by copying a CSL style of your choice
to default.csl in your user data directory.) The CSL project provides further
information on finding and editing styles.

The --citation-abbreviations option (or the citation-abbreviations
metadata field) may be used to specify a JSON file containing abbreviations of
journals that should be used in formatted bibliographies when form="short"
is specified. The format of the file can be illustrated with an example:

{ "default": {
"container-title": {

"Lloyd's Law Reports": "Lloyd's Rep",
"Estates Gazette": "EG",
"Scots Law Times": "SLT"

}
}

}

Citations in note styles
Pandoc’s citation processing is designed to allow you to move between author-
date, numerical, and note styles without modifying the Markdown source. When
you’re using a note style, avoid inserting footnotes manually. Instead, insert
citations just as you would in an author-date style—for example,

Blah blah [@foo, p. 33].

The footnote will be created automatically. Pandoc will take care of removing
the space and moving the note before or after the period, depending on the
setting of notes-after-punctuation, as described below in Other relevant
metadata fields.

101

https://citationstyles.org
https://www.zotero.org/styles
https://chicagomanualofstyle.org
https://citationstyles.org/authors/

In some cases you may need to put a citation inside a regular footnote. Normal
citations in footnotes (such as [@foo, p. 33]) will be rendered in parentheses.
In-text citations (such as @foo [p. 33]) will be rendered without parentheses.
(A comma will be added if appropriate.) Thus:

[^1]: Some studies [@foo; @bar, p. 33] show that
frubulicious zoosnaps are quantical. For a survey
of the literature, see @baz [chap. 1].

Placement of the bibliography
If the style calls for a list of works cited, it will be placed in a div with id refs,
if one exists:

::: {#refs}
:::

Otherwise, it will be placed at the end of the document. Generation of the
bibliography can be suppressed by setting suppress-bibliography: true in
the YAML metadata.

If you wish the bibliography to have a section heading, you can set
reference-section-title in the metadata, or put the heading at the
beginning of the div with id refs (if you are using it) or at the end of your
document:

last paragraph...

References

The bibliography will be inserted after this heading. Note that the unnumbered
class will be added to this heading, so that the section will not be numbered.

If you want to put the bibliography into a variable in your template, one way
to do that is to put the div with id refs into a metadata field, e.g.

refs: |

::: {#refs}
:::

...

You can then put the variable $refs$ into your template where you want the
bibliography to be placed.

Including uncited items in the bibliography
If you want to include items in the bibliography without actually citing them
in the body text, you can define a dummy nocite metadata field and put the
citations there:

102

nocite: |
@item1, @item2

...

@item3

In this example, the document will contain a citation for item3 only, but the
bibliography will contain entries for item1, item2, and item3.

It is possible to create a bibliography with all the citations, whether or not they
appear in the document, by using a wildcard:

nocite: |
@*

...

For LaTeX output, you can also use natbib or biblatex to render the bibliog-
raphy. In order to do so, specify bibliography files as outlined above, and add
--natbib or --biblatex argument to pandoc invocation. Bear in mind that
bibliography files have to be in either BibTeX (for --natbib) or BibLaTeX (for
--biblatex) format.

Other relevant metadata fields
A few other metadata fields affect bibliography formatting:

link-citations If true, citations will be hyperlinked to the corresponding bib-
liography entries (for author-date and numerical styles only). Defaults to
false.

link-bibliography If true, DOIs, PMCIDs, PMID, and URLs in bibliogra-
phies will be rendered as hyperlinks. (If an entry contains a DOI, PMCID,
PMID, or URL, but none of these fields are rendered by the style, then
the title, or in the absence of a title the whole entry, will be hyperlinked.)
Defaults to true.

lang The lang field will affect how the style is localized, for example in the
translation of labels, the use of quotation marks, and the way items are
sorted. (For backwards compatibility, locale may be used instead of
lang, but this use is deprecated.)

A BCP 47 language tag is expected: for example, en, de, en-US, fr-CA,
ug-Cyrl. The unicode extension syntax (after -u-) may be used to specify
options for collation (sorting) more precisely. Here are some examples:

• zh-u-co-pinyin: Chinese with the Pinyin collation.
• es-u-co-trad: Spanish with the traditional collation (with Ch sort-

ing after C).

103

https://ctan.org/pkg/natbib
https://ctan.org/pkg/biblatex

• fr-u-kb: French with “backwards” accent sorting (with coté sorting
after côte).

• en-US-u-kf-upper: English with uppercase letters sorting before
lower (default is lower before upper).

notes-after-punctuation If true (the default for note styles), pandoc
will put footnote references or superscripted numerical citations after
following punctuation. For example, if the source contains blah blah
[@jones99]., the result will look like blah blah.[^1], with the note
moved after the period and the space collapsed. If false, the space will still
be collapsed, but the footnote will not be moved after the punctuation.
The option may also be used in numerical styles that use superscripts
for citation numbers (but for these styles the default is not to move the
citation).

Slide shows
You can use pandoc to produce an HTML + JavaScript slide presentation that
can be viewed via a web browser. There are five ways to do this, using S5,
DZSlides, Slidy, Slideous, or reveal.js. You can also produce a PDF slide show
using LaTeX beamer, or slide shows in Microsoft PowerPoint format.

Here’s the Markdown source for a simple slide show, habits.txt:

% Habits
% John Doe
% March 22, 2005

In the morning

Getting up

- Turn off alarm
- Get out of bed

Breakfast

- Eat eggs
- Drink coffee

In the evening

Dinner

- Eat spaghetti
- Drink wine

104

https://meyerweb.com/eric/tools/s5/
https://paulrouget.com/dzslides/
https://www.w3.org/Talks/Tools/Slidy2/
https://goessner.net/articles/slideous/
https://revealjs.com/
https://ctan.org/pkg/beamer
https://en.wikipedia.org/wiki/Microsoft_PowerPoint

![picture of spaghetti](images/spaghetti.jpg)

Going to sleep

- Get in bed
- Count sheep

To produce an HTML/JavaScript slide show, simply type

pandoc -t FORMAT -s habits.txt -o habits.html

where FORMAT is either s5, slidy, slideous, dzslides, or revealjs.

For Slidy, Slideous, reveal.js, and S5, the file produced by pandoc with the
-s/--standalone option embeds a link to JavaScript and CSS files, which are
assumed to be available at the relative path s5/default (for S5), slideous
(for Slideous), reveal.js (for reveal.js), or at the Slidy website at w3.org (for
Slidy). (These paths can be changed by setting the slidy-url, slideous-url,
revealjs-url, or s5-url variables; see Variables for HTML slides, above.) For
DZSlides, the (relatively short) JavaScript and CSS are included in the file by
default.

With all HTML slide formats, the --self-contained option can be used to
produce a single file that contains all of the data necessary to display the slide
show, including linked scripts, stylesheets, images, and videos.

To produce a PDF slide show using beamer, type

pandoc -t beamer habits.txt -o habits.pdf

Note that a reveal.js slide show can also be converted to a PDF by printing it
to a file from the browser.

To produce a PowerPoint slide show, type

pandoc habits.txt -o habits.pptx

Structuring the slide show
By default, the slide level is the highest heading level in the hierarchy that is
followed immediately by content, and not another heading, somewhere in the
document. In the example above, level-1 headings are always followed by level-2
headings, which are followed by content, so the slide level is 2. This default can
be overridden using the --slide-level option.

The document is carved up into slides according to the following rules:

• A horizontal rule always starts a new slide.

105

• A heading at the slide level always starts a new slide.

• Headings below the slide level in the hierarchy create headings within a
slide. (In beamer, a “block” will be created. If the heading has the class
example, an exampleblock environment will be used; if it has the class
alert, an alertblock will be used; otherwise a regular block will be
used.)

• Headings above the slide level in the hierarchy create “title slides,” which
just contain the section title and help to break the slide show into sections.
Non-slide content under these headings will be included on the title slide
(for HTML slide shows) or in a subsequent slide with the same title (for
beamer).

• A title page is constructed automatically from the document’s title block,
if present. (In the case of beamer, this can be disabled by commenting
out some lines in the default template.)

These rules are designed to support many different styles of slide show. If you
don’t care about structuring your slides into sections and subsections, you can
either just use level-1 headings for all slides (in that case, level 1 will be the
slide level) or you can set --slide-level=0.

Note: in reveal.js slide shows, if slide level is 2, a two-dimensional layout will
be produced, with level-1 headings building horizontally and level-2 headings
building vertically. It is not recommended that you use deeper nesting of sec-
tion levels with reveal.js unless you set --slide-level=0 (which lets reveal.js
produce a one-dimensional layout and only interprets horizontal rules as slide
boundaries).

PowerPoint layout choice

When creating slides, the pptx writer chooses from a number of pre-defined
layouts, based on the content of the slide:

Title Slide This layout is used for the initial slide, which is generated and filled
from the metadata fields date, author, and title, if they are present.

Section Header This layout is used for what pandoc calls “title slides”, i.e.
slides which start with a header which is above the slide level in the hier-
archy.

Two Content This layout is used for two-column slides, i.e. slides containing a
div with class columns which contains at least two divs with class column.

Comparison This layout is used instead of “Two Content” for any two-column
slides in which at least one column contains text followed by non-text
(e.g. an image or a table).

Content with Caption This layout is used for any non-two-column slides
which contain text followed by non-text (e.g. an image or a table).

Blank This layout is used for any slides which only contain blank content,
e.g. a slide containing only speaker notes, or a slide containing only a

106

non-breaking space.
Title and Content This layout is used for all slides which do not match the

criteria for another layout.

These layouts are chosen from the default pptx reference doc included with
pandoc, unless an alternative reference doc is specified using --reference-doc.

Incremental lists
By default, these writers produce lists that display “all at once.” If you want
your lists to display incrementally (one item at a time), use the -i option. If
you want a particular list to depart from the default, put it in a div block with
class incremental or nonincremental. So, for example, using the fenced div
syntax, the following would be incremental regardless of the document default:

::: incremental

- Eat spaghetti
- Drink wine

:::

or

::: nonincremental

- Eat spaghetti
- Drink wine

:::

While using incremental and nonincremental divs is the recommended
method of setting incremental lists on a per-case basis, an older method is also
supported: putting lists inside a blockquote will depart from the document
default (that is, it will display incrementally without the -i option and all at
once with the -i option):

> - Eat spaghetti
> - Drink wine

Both methods allow incremental and nonincremental lists to be mixed in a single
document.

If you want to include a block-quoted list, you can work around this behavior
by putting the list inside a fenced div, so that it is not the direct child of the
block quote:

> ::: wrapper
> - a
> - list in a quote

107

> :::

Inserting pauses
You can add “pauses” within a slide by including a paragraph containing three
dots, separated by spaces:

Slide with a pause

content before the pause

. . .

content after the pause

Note: this feature is not yet implemented for PowerPoint output.

Styling the slides
You can change the style of HTML slides by putting customized CSS
files in $DATADIR/s5/default (for S5), $DATADIR/slidy (for Slidy), or
$DATADIR/slideous (for Slideous), where $DATADIR is the user data directory
(see --data-dir, above). The originals may be found in pandoc’s system data
directory (generally $CABALDIR/pandoc-VERSION/s5/default). Pandoc will
look there for any files it does not find in the user data directory.

For dzslides, the CSS is included in the HTML file itself, and may be modified
there.

All reveal.js configuration options can be set through variables. For example,
themes can be used by setting the theme variable:

-V theme=moon

Or you can specify a custom stylesheet using the --css option.

To style beamer slides, you can specify a theme, colortheme, fonttheme,
innertheme, and outertheme, using the -V option:

pandoc -t beamer habits.txt -V theme:Warsaw -o habits.pdf

Note that heading attributes will turn into slide attributes (on a <div> or
<section>) in HTML slide formats, allowing you to style individual slides. In
beamer, a number of heading classes and attributes are recognized as frame op-
tions and will be passed through as options to the frame: see Frame attributes
in beamer, below.

Speaker notes
Speaker notes are supported in reveal.js, PowerPoint (pptx), and beamer output.
You can add notes to your Markdown document thus:

108

https://revealjs.com/config/

::: notes

This is my note.

- It can contain Markdown
- like this list

:::

To show the notes window in reveal.js, press s while viewing the presentation.
Speaker notes in PowerPoint will be available, as usual, in handouts and pre-
senter view.

Notes are not yet supported for other slide formats, but the notes will not appear
on the slides themselves.

Columns
To put material in side by side columns, you can use a native div container with
class columns, containing two or more div containers with class column and a
width attribute:

:::::::::::::: {.columns}
::: {.column width="40%"}
contents...
:::
::: {.column width="60%"}
contents...
:::
::::::::::::::

Note: Specifying column widths does not currently work for PowerPoint.

Additional columns attributes in beamer

The div containers with classes columns and column can optionally have an
align attribute. The class columns can optionally have a totalwidth attribute
or an onlytextwidth class.

:::::::::::::: {.columns align=center totalwidth=8em}
::: {.column width="40%"}
contents...
:::
::: {.column width="60%" align=bottom}
contents...
:::
::::::::::::::

109

The align attributes on columns and column can be used with the values top,
top-baseline, center and bottom to vertically align the columns. It defaults
to top in columns.

The totalwidth attribute limits the width of the columns to the given value.

:::::::::::::: {.columns align=top .onlytextwidth}
::: {.column width="40%" align=center}
contents...
:::
::: {.column width="60%"}
contents...
:::
::::::::::::::

The class onlytextwidth sets the totalwidth to \textwidth.

See Section 12.7 of the Beamer User’s Guide for more details.

Frame attributes in beamer
Sometimes it is necessary to add the LaTeX [fragile] option to a frame in
beamer (for example, when using the minted environment). This can be forced
by adding the fragile class to the heading introducing the slide:

Fragile slide {.fragile}

All of the other frame attributes described in Section 8.1 of the Beamer User’s
Guide may also be used: allowdisplaybreaks, allowframebreaks, b, c, s, t,
environment, label, plain, shrink, standout, noframenumbering, squeeze.
allowframebreaks is recommended especially for bibliographies, as it allows
multiple slides to be created if the content overfills the frame:

References {.allowframebreaks}

In addition, the frameoptions attribute may be used to pass arbitrary frame
options to a beamer slide:

Heading {frameoptions="squeeze,shrink,customoption=foobar"}

Background in reveal.js, beamer, and pptx
Background images can be added to self-contained reveal.js slide shows, beamer
slide shows, and pptx slide shows.

On all slides (beamer, reveal.js, pptx)

With beamer and reveal.js, the configuration option background-image can be
used either in the YAML metadata block or as a command-line variable to get
the same image on every slide.

110

http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
http://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf

Note that for reveal.js, the background-image will be used as a parallaxBackgroundImage
(see below).

For pptx, you can use a --reference-doc in which background images have
been set on the relevant layouts.

parallaxBackgroundImage (reveal.js) For reveal.js, there is also the
reveal.js-native option parallaxBackgroundImage, which produces a parallax
scrolling background. You must also set parallaxBackgroundSize, and can op-
tionally set parallaxBackgroundHorizontal and parallaxBackgroundVertical
to configure the scrolling behaviour. See the reveal.js documentation for more
details about the meaning of these options.

In reveal.js’s overview mode, the parallaxBackgroundImage will show up only
on the first slide.

On individual slides (reveal.js, pptx)

To set an image for a particular reveal.js or pptx slide, add {background-image="/path/to/image"}
to the first slide-level heading on the slide (which may even be empty).

As the HTML writers pass unknown attributes through, other reveal.js back-
ground settings also work on individual slides, including background-size,
background-repeat, background-color, transition, and transition-speed.
(The data- prefix will automatically be added.)

Note: data-background-image is also supported in pptx for consistency with
reveal.js – if background-image isn’t found, data-background-image will be
checked.

On the title slide (reveal.js, pptx)

To add a background image to the automatically generated title slide for re-
veal.js, use the title-slide-attributes variable in the YAML metadata block.
It must contain a map of attribute names and values. (Note that the data- pre-
fix is required here, as it isn’t added automatically.)

For pptx, pass a --reference-doc with the background image set on the “Title
Slide” layout.

Example (reveal.js)

title: My Slide Show
parallaxBackgroundImage: /path/to/my/background_image.png
title-slide-attributes:

data-background-image: /path/to/title_image.png
data-background-size: contain

111

https://revealjs.com/backgrounds/#parallax-background

Slide One

Slide 1 has background_image.png as its background.

{background-image="/path/to/special_image.jpg"}

Slide 2 has a special image for its background, even though the heading has no content.

EPUBs
EPUB Metadata
There are two ways to specify metadata for an EPUB. The first is to use the
--epub-metadata option, which takes as its argument an XML file with Dublin
Core elements.

The second way is to use YAML, either in a YAML metadata block in a Mark-
down document, or in a separate YAML file specified with --metadata-file.
Here is an example of a YAML metadata block with EPUB metadata:

title:
- type: main
text: My Book

- type: subtitle
text: An investigation of metadata

creator:
- role: author
text: John Smith

- role: editor
text: Sarah Jones

identifier:
- scheme: DOI
text: doi:10.234234.234/33

publisher: My Press
rights: © 2007 John Smith, CC BY-NC
ibooks:
version: 1.3.4

...

The following fields are recognized:

identifier Either a string value or an object with fields text and scheme.
Valid values for scheme are ISBN-10, GTIN-13, UPC, ISMN-10, DOI, LCCN,
GTIN-14, ISBN-13, Legal deposit number, URN, OCLC, ISMN-13, ISBN-A,
JP, OLCC.

112

https://www.dublincore.org/specifications/dublin-core/dces/
https://www.dublincore.org/specifications/dublin-core/dces/

title Either a string value, or an object with fields file-as and type, or a
list of such objects. Valid values for type are main, subtitle, short,
collection, edition, extended.

creator Either a string value, or an object with fields role, file-as, and
text, or a list of such objects. Valid values for role are MARC relators,
but pandoc will attempt to translate the human-readable versions (like
“author” and “editor”) to the appropriate marc relators.

contributor Same format as creator.

date A string value in YYYY-MM-DD format. (Only the year is necessary.) Pan-
doc will attempt to convert other common date formats.

lang (or legacy: language) A string value in BCP 47 format. Pandoc will
default to the local language if nothing is specified.

subject Either a string value, or an object with fields text, authority, and
term, or a list of such objects. Valid values for authority are either
a reserved authority value (currently AAT, BIC, BISAC, CLC, DDC, CLIL,
EuroVoc, MEDTOP, LCSH, NDC, Thema, UDC, and WGS) or an absolute IRI
identifying a custom scheme. Valid values for term are defined by the
scheme.

description A string value.

type A string value.

format A string value.

relation A string value.

coverage A string value.

rights A string value.

belongs-to-collection A string value. Identifies the name of a collection to
which the EPUB Publication belongs.

group-position The group-position field indicates the numeric position in
which the EPUB Publication belongs relative to other works belonging to
the same belongs-to-collection field.

cover-image A string value (path to cover image).

css (or legacy: stylesheet) A string value (path to CSS stylesheet).

page-progression-direction Either ltr or rtl. Specifies the page-progression-direction
attribute for the spine element.

accessModes An array of strings (schema). Defaults to ["textual"].

accessModeSufficient An array of strings (schema). Defaults to
["textual"].

113

https://loc.gov/marc/relators/relaterm.html
https://tools.ietf.org/html/bcp47
https://idpf.github.io/epub-registries/authorities/
http://idpf.org/epub/301/spec/epub-publications.html#sec-spine-elem
https://kb.daisy.org/publishing/docs/metadata/schema.org/index.html
https://kb.daisy.org/publishing/docs/metadata/schema.org/index.html

accessibilityHazards An array of strings (schema). Defaults to ["none"].

accessibilityFeatures An array of strings (schema). Defaults to

- "alternativeText"
- "readingOrder"
- "structuralNavigation"
- "tableOfContents"

accessibilitySummary A string value.

ibooks iBooks-specific metadata, with the following fields:

• version: (string)
• specified-fonts: true|false (default false)
• ipad-orientation-lock: portrait-only|landscape-only
• iphone-orientation-lock: portrait-only|landscape-only
• binding: true|false (default true)
• scroll-axis: vertical|horizontal|default

The epub:type attribute
For epub3 output, you can mark up the heading that corresponds to an EPUB
chapter using the epub:type attribute. For example, to set the attribute to the
value prologue, use this Markdown:

My chapter {epub:type=prologue}

Which will result in:

<body epub:type="frontmatter">
<section epub:type="prologue">
<h1>My chapter</h1>

Pandoc will output <body epub:type="bodymatter">, unless you use one of
the following values, in which case either frontmatter or backmatter will be
output.

epub:type of first section epub:type of body
prologue frontmatter
abstract frontmatter
acknowledgments frontmatter
copyright-page frontmatter
dedication frontmatter
credits frontmatter
keywords frontmatter
imprint frontmatter
contributors frontmatter
other-credits frontmatter
errata frontmatter

114

https://kb.daisy.org/publishing/docs/metadata/schema.org/index.html
https://kb.daisy.org/publishing/docs/metadata/schema.org/index.html
http://www.idpf.org/epub/31/spec/epub-contentdocs.html#sec-epub-type-attribute

epub:type of first section epub:type of body
revision-history frontmatter
titlepage frontmatter
halftitlepage frontmatter
seriespage frontmatter
foreword frontmatter
preface frontmatter
frontispiece frontmatter
appendix backmatter
colophon backmatter
bibliography backmatter
index backmatter

Linked media
By default, pandoc will download media referenced from any , <audio>,
<video> or <source> element present in the generated EPUB, and include it
in the EPUB container, yielding a completely self-contained EPUB. If you want
to link to external media resources instead, use raw HTML in your source and
add data-external="1" to the tag with the src attribute. For example:

<audio controls="1">
<source src="https://example.com/music/toccata.mp3"

data-external="1" type="audio/mpeg">
</source>

</audio>

If the input format already is HTML then data-external="1" will work as
expected for elements. Similarly, for Markdown, external images can be
declared with ![img](url){external=1}. Note that this only works for images;
the other media elements have no native representation in pandoc’s AST and
require the use of raw HTML.

EPUB styling
By default, pandoc will include some basic styling contained in its epub.css
data file. (To see this, use pandoc --print-default-data-file epub.css.)
To use a different CSS file, just use the --css command line option. A few
inline styles are defined in addition; these are essential for correct formatting of
pandoc’s HTML output.

The document-css variable may be set if the more opinionated styling of pan-
doc’s default HTML templates is desired (and in that case the variables defined
in Variables for HTML may be used to fine-tune the style).

115

Chunked HTML
pandoc -t chunkedhtml will produce a zip archive of linked HTML files, one
for each section of the original document. Internal links will automatically be
adjusted to point to the right place, images linked to under the working directory
will be incorporated, and navigation links will be added. In addition, a JSON
file sitemap.json will be included describing the hierarchical structure of the
files.

If an output file without an extension is specified, then it will be interpreted as
a directory and the zip archive will be automatically unpacked into it (unless it
already exists, in which case an error will be raised). Otherwise a .zip file will
be produced.

The navigation links can be customized by adjusting the template. By default,
a table of contents is included only on the top page. To include it on every page,
set the toc variable manually.

Jupyter notebooks
When creating a Jupyter notebook, pandoc will try to infer the notebook struc-
ture. Code blocks with the class code will be taken as code cells, and intervening
content will be taken as Markdown cells. Attachments will automatically be cre-
ated for images in Markdown cells. Metadata will be taken from the jupyter
metadata field. For example:

title: My notebook
jupyter:
nbformat: 4
nbformat_minor: 5
kernelspec:

display_name: Python 2
language: python
name: python2

language_info:
codemirror_mode:
name: ipython
version: 2

file_extension: ".py"
mimetype: "text/x-python"
name: "python"
nbconvert_exporter: "python"
pygments_lexer: "ipython2"
version: "2.7.15"

116

https://nbformat.readthedocs.io/en/latest/

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc luctus
bibendum felis dictum sodales.

``` code
print("hello")
```

Pyout

``` code
from IPython.display import HTML
HTML("""
<script>
console.log("hello");
</script>
<b>HTML</b>
""")
```

Image

This image ![image](myimage.png) will be
included as a cell attachment.

If you want to add cell attributes, group cells differently, or add output to code
cells, then you need to include divs to indicate the structure. You can use either
fenced divs or native divs for this. Here is an example:

:::::: {.cell .markdown}
Lorem

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc luctus
bibendum felis dictum sodales.
::::::

:::::: {.cell .code execution_count=1}
``` {.python}
print("hello")
```

::: {.output .stream .stdout}
```
hello
```
:::

117

::::::

:::::: {.cell .code execution_count=2}
``` {.python}
from IPython.display import HTML
HTML("""
<script>
console.log("hello");
</script>
<b>HTML</b>
""")
```

::: {.output .execute_result execution_count=2}
```{=html}
<script>
console.log("hello");
</script>
<b>HTML</b>
hello
```
:::
::::::

If you include raw HTML or TeX in an output cell, use the raw attribute,
as shown in the last cell of the example above. Although pandoc can pro-
cess “bare” raw HTML and TeX, the result is often interspersed raw elements
and normal textual elements, and in an output cell pandoc expects a sin-
gle, connected raw block. To avoid using raw HTML or TeX except when
marked explicitly using raw attributes, we recommend specifying the extensions
-raw_html-raw_tex+raw_attribute when translating between Markdown and
ipynb notebooks.

Note that options and extensions that affect reading and writing of Mark-
down will also affect Markdown cells in ipynb notebooks. For exam-
ple, --wrap=preserve will preserve soft line breaks in Markdown cells;
--markdown-headings=setext will cause Setext-style headings to be used; and
--preserve-tabs will prevent tabs from being turned to spaces.

Syntax highlighting
Pandoc will automatically highlight syntax in fenced code blocks that are
marked with a language name. The Haskell library skylighting is used for
highlighting. Currently highlighting is supported only for HTML, EPUB,
Docx, Ms, Man, and LaTeX/PDF output. To see a list of language names that
pandoc will recognize, type pandoc --list-highlight-languages.

118

https://github.com/jgm/skylighting

The color scheme can be selected using the --highlight-style option. The
default color scheme is pygments, which imitates the default color scheme
used by the Python library pygments (though pygments is not actually
used to do the highlighting). To see a list of highlight styles, type pandoc
--list-highlight-styles.

If you are not satisfied with the predefined styles, you can use --print-highlight-style
to generate a JSON .theme file which can be modified and used as the argument
to --highlight-style. To get a JSON version of the pygments style, for
example:

pandoc -o my.theme --print-highlight-style pygments

Then edit my.theme and use it like this:

pandoc --highlight-style my.theme

If you are not satisfied with the built-in highlighting, or you want to highlight
a language that isn’t supported, you can use the --syntax-definition option
to load a KDE-style XML syntax definition file. Before writing your own, have
a look at KDE’s repository of syntax definitions.

If you receive an error that pandoc “Could not read highlighting theme”, check
that the JSON file is encoded with UTF-8 and has no Byte-Order Mark (BOM).

To disable highlighting, use the --no-highlight option.

Custom Styles
Custom styles can be used in the docx, odt and ICML formats.

Output
By default, pandoc’s odt, docx and ICML output applies a predefined set of
styles for blocks such as paragraphs and block quotes, and uses largely default
formatting (italics, bold) for inlines. This will work for most purposes, especially
alongside a reference doc file. However, if you need to apply your own styles to
blocks, or match a preexisting set of styles, pandoc allows you to define custom
styles for blocks and text using divs and spans, respectively.

If you define a Div, Span, or Table with the attribute custom-style, pandoc
will apply your specified style to the contained elements (with the exception of
elements whose function depends on a style, like headings, code blocks, block
quotes, or links). So, for example, using the bracketed_spans syntax,

[Get out]{custom-style="Emphatically"}, he said.

would produce a file with “Get out” styled with character style Emphatically.
Similarly, using the fenced_divs syntax,

119

https://docs.kde.org/stable5/en/kate/katepart/highlight.html
https://github.com/KDE/syntax-highlighting/tree/master/data/syntax

Dickinson starts the poem simply:

::: {custom-style="Poetry"}
| A Bird came down the Walk---
| He did not know I saw---
:::

would style the two contained lines with the Poetry paragraph style.

Styles will be defined in the output file as inheriting from normal text (docx) or
Default Paragraph Style (odt), if the styles are not yet in your reference doc. If
they are already defined, pandoc will not alter the definition.

This feature allows for greatest customization in conjunction with pandoc filters.
If you want all paragraphs after block quotes to be indented, you can write a
filter to apply the styles necessary. If you want all italics to be transformed to
the Emphasis character style (perhaps to change their color), you can write a
filter which will transform all italicized inlines to inlines within an Emphasis
custom-style span.

For docx or odt output, you don’t need to enable any extensions for custom
styles to work.

Input
The docx reader, by default, only reads those styles that it can convert into
pandoc elements, either by direct conversion or interpreting the derivation of
the input document’s styles.

By enabling the styles extension in the docx reader (-f docx+styles), you
can produce output that maintains the styles of the input document, using
the custom-style class. A custom-style attribute will be added for each
style. Divs will be created to hold the paragraph styles, and Spans to hold the
character styles. Table styles will be applied directly to the Table.

For example, using the custom-style-reference.docx file in the test directory,
we have the following different outputs:

Without the +styles extension:

$ pandoc test/docx/custom-style-reference.docx -f docx -t markdown
This is some text.

This is text with an *emphasized* text style. And this is text with a
strengthened text style.

> Here is a styled paragraph that inherits from Block Text.

And with the extension:

$ pandoc test/docx/custom-style-reference.docx -f docx+styles -t markdown

120

https://pandoc.org/filters.html

::: {custom-style="First Paragraph"}
This is some text.
:::

::: {custom-style="Body Text"}
This is text with an [emphasized]{custom-style="Emphatic"} text style.
And this is text with a [strengthened]{custom-style="Strengthened"}
text style.
:::

::: {custom-style="My Block Style"}
> Here is a styled paragraph that inherits from Block Text.
:::

With these custom styles, you can use your input document as a reference-doc
while creating docx output (see below), and maintain the same styles in your
input and output files.

Custom readers and writers
Pandoc can be extended with custom readers and writers written in Lua. (Pan-
doc includes a Lua interpreter, so Lua need not be installed separately.)

To use a custom reader or writer, simply specify the path to the Lua script in
place of the input or output format. For example:

pandoc -t data/sample.lua
pandoc -f my_custom_markup_language.lua -t latex -s

If the script is not found relative to the working directory, it will be sought in
the custom subdirectory of the user data directory (see --data-dir).

A custom reader is a Lua script that defines one function, Reader, which takes
a string as input and returns a Pandoc AST. See the Lua filters documentation
for documentation of the functions that are available for creating pandoc AST
elements. For parsing, the lpeg parsing library is available by default. To see a
sample custom reader:

pandoc --print-default-data-file creole.lua

If you want your custom reader to have access to reader options (e.g. the tab
stop setting), you give your Reader function a second options parameter.

A custom writer is a Lua script that defines a function that specifies how to
render each element in a Pandoc AST. See the djot-writer.lua for a full-featured
example.

Note that custom writers have no default template. If you want to use

121

https://www.lua.org
https://pandoc.org/lua-filters.html
http://www.inf.puc-rio.br/~roberto/lpeg/
https://github.com/jgm/djot.lua/blob/main/djot-writer.lua

--standalone with a custom writer, you will need to specify a template
manually using --template or add a new default template with the name
default.NAME_OF_CUSTOM_WRITER.lua to the templates subdirectory of your
user data directory (see Templates).

Reproducible builds
Some of the document formats pandoc targets (such as EPUB, docx, and ODT)
include build timestamps in the generated document. That means that the files
generated on successive builds will differ, even if the source does not. To avoid
this, set the SOURCE_DATE_EPOCH environment variable, and the timestamp will
be taken from it instead of the current time. SOURCE_DATE_EPOCH should contain
an integer unix timestamp (specifying the number of seconds since midnight
UTC January 1, 1970).

Some document formats also include a unique identifier. For EPUB, this can be
set explicitly by setting the identifier metadata field (see EPUB Metadata,
above).

Accessible PDFs and PDF archiving standards
PDF is a flexible format, and using PDF in certain contexts requires additional
conventions. For example, PDFs are not accessible by default; they define how
characters are placed on a page but do not contain semantic information on the
content. However, it is possible to generate accessible PDFs, which use tagging
to add semantic information to the document.

Pandoc defaults to LaTeX to generate PDF. Tagging support in LaTeX is in
development and not readily available, so PDFs generated in this way will always
be untagged and not accessible. This means that alternative engines must be
used to generate accessible PDFs.

The PDF standards PDF/A and PDF/UA define further restrictions intended
to optimize PDFs for archiving and accessibility. Tagging is commonly used in
combination with these standards to ensure best results.

Note, however, that standard compliance depends on many things, including
the colorspace of embedded images. Pandoc cannot check this, and external
programs must be used to ensure that generated PDFs are in compliance.

ConTeXt
ConTeXt always produces tagged PDFs, but the quality depends on the input.
The default ConTeXt markup generated by pandoc is optimized for readability
and reuse, not tagging. Enable the tagging format extension to force markup
that is optimized for tagging. This can be combined with the pdfa variable to
generate standard-compliant PDFs. E.g.:

122

pandoc --to=context+tagging -V pdfa=3a

A recent context version should be used, as older versions contained a bug that
lead to invalid PDF metadata.

WeasyPrint
The HTML-based engine WeasyPrint includes experimental support for PDF/A
and PDF/UA since version 57. Tagged PDFs can created with

pandoc --pdf-engine=weasyprint \
--pdf-engine-opt=--pdf-variant=pdf/ua-1 ...

The feature is experimental and standard compliance should not be assumed.

Prince XML
The non-free HTML-to-PDf converter prince has extensive support for various
PDF standards as well as tagging. E.g.:

pandoc --pdf-engine=prince \
--pdf-engine-opt=--tagged-pdf ...

See the prince documentation for more info.

Typst
Typst 0.12 can produce PDF/A-2b:

pandoc --pdf-engine=typst --pdf-engine-opt=--pdf-standard=a-2b ...

Word Processors
Word processors like LibreOffice and MS Word can also be used to generate
standardized and tagged PDF output. Pandoc does not support direct conver-
sions via these tools. However, pandoc can convert a document to a docx or
odt file, which can then be opened and converted to PDF with the respective
word processor. See the documentation for Word and LibreOffice.

Running pandoc as a web server
If you rename (or symlink) the pandoc executable to pandoc-server, or if you
call pandoc with server as the first argument, it will start up a web server
with a JSON API. This server exposes most of the conversion functionality of
pandoc. For full documentation, see the pandoc-server man page.

If you rename (or symlink) the pandoc executable to pandoc-server.cgi, it
will function as a CGI program exposing the same API as pandoc-server.

123

https://support.microsoft.com/en-us/office/create-accessible-pdfs-064625e0-56ea-4e16-ad71-3aa33bb4b7ed
https://help.libreoffice.org/latest/en-US/text/shared/01/ref_pdf_export_general.html
https://github.com/jgm/pandoc/blob/master/doc/pandoc-server.md

pandoc-server is designed to be maximally secure; it uses Haskell’s type system
to provide strong guarantees that no I/O will be performed on the server during
pandoc conversions.

Running pandoc as a Lua interpreter
Calling the pandoc executable under the name pandoc-lua or with lua as
the first argument will make it function as a standalone Lua interpreter. The
behavior is mostly identical to that of the standalone lua executable, version
5.4. For full documentation, see the pandoc-lua man page.

A note on security
1. Although pandoc itself will not create or modify any files other than those

you explicitly ask it create (with the exception of temporary files used in
producing PDFs), a filter or custom writer could in principle do anything
on your file system. Please audit filters and custom writers very carefully
before using them.

2. Several input formats (including LaTeX, Org, RST, and Typst) support
include directives that allow the contents of a file to be included in the
output. An untrusted attacker could use these to view the contents of files
on the file system. (Using the --sandbox option can protect against this
threat.)

3. Several output formats (including RTF, FB2, HTML with --self-contained,
EPUB, Docx, and ODT) will embed encoded or raw images into the
output file. An untrusted attacker could exploit this to view the contents
of non-image files on the file system. (Using the --sandbox option can
protect against this threat, but will also prevent including images in these
formats.)

4. In reading HTML files, pandoc will attempt to include the contents of
iframe elements by fetching content from the local file or URL specified
by src. If untrusted HTML is processed on a server, this has the potential
to reveal anything readable by the process running the server. Using the
-f html+raw_html will mitigate this threat by causing the whole iframe
to be parsed as a raw HTML block. Using ‘–sandbox will also protect
against the threat.

5. If your application uses pandoc as a Haskell library (rather than shelling
out to the executable), it is possible to use it in a mode that fully isolates
pandoc from your file system, by running the pandoc operations in the
PandocPure monad. See the document Using the pandoc API for more
details. (This corresponds to the use of the --sandbox option on the
command line.)

124

https://www.lua.org/manual/5.4/manual.html#7
https://github.com/jgm/pandoc/blob/master/doc/pandoc-lua.md
https://pandoc.org/using-the-pandoc-api.html

6. Pandoc’s parsers can exhibit pathological performance on some corner
cases. It is wise to put any pandoc operations under a timeout, to avoid
DOS attacks that exploit these issues. If you are using the pandoc exe-
cutable, you can add the command line options +RTS -M512M -RTS (for ex-
ample) to limit the heap size to 512MB. Note that the commonmark parser
(including commonmark_x and gfm) is much less vulnerable to pathologi-
cal performance than the markdown parser, so it is a better choice when
processing untrusted input.

7. The HTML generated by pandoc is not guaranteed to be safe. If raw_html
is enabled for the Markdown input, users can inject arbitrary HTML. Even
if raw_html is disabled, users can include dangerous content in URLs and
attributes. To be safe, you should run all HTML generated from untrusted
user input through an HTML sanitizer.

Authors
Copyright 2006–2024 John MacFarlane (jgm@berkeley.edu). Released under
the GPL, version 2 or greater. This software carries no warranty of any kind.
(See COPYRIGHT for full copyright and warranty notices.) For a full list of
contributors, see the file AUTHORS.md in the pandoc source code.

125

https://www.gnu.org/copyleft/gpl.html

	Synopsis
	Description
	Using pandoc
	Specifying formats
	Character encoding
	Creating a PDF
	Reading from the Web

	Options
	General options
	Reader options
	General writer options
	Options affecting specific writers
	Citation rendering
	Math rendering in HTML
	Options for wrapper scripts

	Exit codes
	Defaults files
	General options
	Reader options
	General writer options
	Options affecting specific writers
	Citation rendering
	Math rendering in HTML
	Options for wrapper scripts

	Templates
	Template syntax
	Comments
	Delimiters
	Interpolated variables
	Conditionals
	For loops
	Partials
	Nesting
	Breakable spaces
	Pipes

	Variables
	Metadata variables
	Language variables
	Variables for HTML
	Variables for HTML math
	Variables for HTML slides
	Variables for Beamer slides
	Variables for PowerPoint
	Variables for LaTeX
	Variables for ConTeXt
	Variables for wkhtmltopdf
	Variables for man pages
	Variables for Texinfo
	Variables for Typst
	Variables for ms
	Variables set automatically

	Extensions
	Typography
	Extension: smart

	Headings and sections
	Extension: auto_identifiers
	Extension: ascii_identifiers
	Extension: gfm_auto_identifiers

	Math Input
	Raw HTML/TeX
	Literate Haskell support
	Extension: literate_haskell

	Other extensions
	Extension: empty_paragraphs
	Extension: native_numbering
	Extension: xrefs_name
	Extension: xrefs_number
	Extension: styles
	Extension: amuse
	Extension: raw_markdown
	Extension: citations (typst)
	Extension: citations (org)
	Extension: citations (docx)
	Extension: fancy_lists (org)
	Extension: element_citations
	Extension: ntb
	Extension: tagging

	Pandoc’s Markdown
	Philosophy
	Paragraphs
	Extension: escaped_line_breaks

	Headings
	Setext-style headings
	ATX-style headings
	Extension: blank_before_header
	Extension: space_in_atx_header
	Heading identifiers
	Extension: header_attributes
	Extension: implicit_header_references

	Block quotations
	Extension: blank_before_blockquote

	Verbatim (code) blocks
	Indented code blocks
	Fenced code blocks
	Extension: fenced_code_blocks
	Extension: backtick_code_blocks
	Extension: fenced_code_attributes

	Line blocks
	Extension: line_blocks

	Lists
	Bullet lists
	Block content in list items
	Ordered lists
	Extension: fancy_lists
	Extension: startnum
	Extension: task_lists
	Definition lists
	Extension: definition_lists
	Numbered example lists
	Extension: example_lists
	Ending a list

	Horizontal rules
	Tables
	Extension: table_captions
	Extension: simple_tables
	Extension: multiline_tables
	Extension: grid_tables
	Extension: pipe_tables

	Metadata blocks
	Extension: pandoc_title_block
	Extension: yaml_metadata_block

	Backslash escapes
	Extension: all_symbols_escapable

	Inline formatting
	Emphasis
	Extension: intraword_underscores
	Strikeout
	Extension: strikeout
	Superscripts and subscripts
	Extension: superscript, subscript
	Verbatim
	Extension: inline_code_attributes
	Underline
	Small caps
	Highlighting

	Math
	Extension: tex_math_dollars

	Raw HTML
	Extension: raw_html
	Extension: markdown_in_html_blocks
	Extension: native_divs
	Extension: native_spans
	Extension: raw_tex
	Generic raw attribute
	Extension: raw_attribute

	LaTeX macros
	Extension: latex_macros

	Links
	Automatic links
	Inline links
	Reference links
	Extension: shortcut_reference_links
	Internal links

	Images
	Extension: implicit_figures
	Extension: link_attributes

	Divs and Spans
	Extension: fenced_divs
	Extension: bracketed_spans

	Footnotes
	Extension: footnotes
	Extension: inline_notes

	Citation syntax
	Extension: citations

	Non-default extensions
	Extension: rebase_relative_paths
	Extension: mark
	Extension: attributes
	Extension: old_dashes
	Extension: angle_brackets_escapable
	Extension: lists_without_preceding_blankline
	Extension: four_space_rule
	Extension: spaced_reference_links
	Extension: hard_line_breaks
	Extension: ignore_line_breaks
	Extension: east_asian_line_breaks
	Extension: emoji
	Extension: tex_math_gfm
	Extension: tex_math_single_backslash
	Extension: tex_math_double_backslash
	Extension: markdown_attribute
	Extension: mmd_title_block
	Extension: abbreviations
	Extension: alerts
	Extension: autolink_bare_uris
	Extension: mmd_link_attributes
	Extension: mmd_header_identifiers
	Extension: compact_definition_lists
	Extension: gutenberg
	Extension: sourcepos
	Extension: short_subsuperscripts
	Extension: wikilinks_title_after_pipe

	Markdown variants

	Citations
	Specifying bibliographic data
	Capitalization in titles
	Conference Papers, Published vs. Unpublished

	Specifying a citation style
	Citations in note styles
	Placement of the bibliography
	Including uncited items in the bibliography
	Other relevant metadata fields

	Slide shows
	Structuring the slide show
	PowerPoint layout choice

	Incremental lists
	Inserting pauses
	Styling the slides
	Speaker notes
	Columns
	Additional columns attributes in beamer

	Frame attributes in beamer
	Background in reveal.js, beamer, and pptx
	On all slides (beamer, reveal.js, pptx)
	On individual slides (reveal.js, pptx)
	On the title slide (reveal.js, pptx)
	Example (reveal.js)

	EPUBs
	EPUB Metadata
	The epub:type attribute
	Linked media
	EPUB styling

	Chunked HTML
	Jupyter notebooks
	Syntax highlighting
	Custom Styles
	Output
	Input

	Custom readers and writers
	Reproducible builds
	Accessible PDFs and PDF archiving standards
	ConTeXt
	WeasyPrint
	Prince XML
	Typst
	Word Processors

	Running pandoc as a web server
	Running pandoc as a Lua interpreter
	A note on security
	Authors

